• Title/Summary/Keyword: 황화

Search Result 1,241, Processing Time 0.025 seconds

Reuse of Hydrogen Sulfide by Ferric Chelate Reaction of Food Waste Anaerobic Digestion Gas, Sulfur Recovery and its Economic Evaluation (킬레이트 착화학반응에 의한 음식물폐기물 혐기소화가스 중 황화수소의 제거와 황회수 및 경제성평가)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2014
  • Several experiments have been done to investigate the removal of hydrogen sulfide ($H_2S$) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1-1 M Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by chelate. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed with minor potential for further pollution. As the Fe-EDTA concentration increased, the conversion rate of hydrogen sulfide increased because of the high stability of Fe-EDTA complex. pH as an important environmental factor was 9.0 for the stability of chemical complex in the oxidation of hydrogen sulfide.

Performance Evaluation of Manhole Filter to Remove Odor Inside Sewage Pipe -Focused on Removal of Hydrogen sulfide- (하수관거 악취 제거를 위한 맨홀필터 악취제거장치 성능 평가 - 황화수소 제거를 중심으로 -)

  • Kim, Choong-Gon;Lee, Jang-Hown
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.45-51
    • /
    • 2018
  • The objective of this study is to evaluate the applicability of a manhole-filter odor eliminator that is installed on a manhole to remove hydrogen sulfide ($H_2S$) contained in the sewage of urban streets; $H_2S$ is the very cause of offensive odor from such sewage. An analysis of the capability of impregnated activated carbon, which is contained in the manhole filter, to adsorb hydrogen sulfide shows that some 99.8% of hydrogen sulfide can be removed. A performance evaluation of the manhole-filter odor eliminator, which was made on Manhole Section 4 known as the representative malodorous manhole section of Seoul, Korea, indicates that more than 97% of hydrogen sulfide ($H_2S$), one of typical malodor-generating substances, can be eliminated. The results and findings of the study as described above suggest that the applicability of the manhole-filter odor eliminator to eliminate offensive odor generated from sewer manholes is satisfactory.

Reduction of dissolved hydrogen sulfide and mortality of white leg shrimp, Litopenaeus vannamei by Bacillus spp. microorganisms (Bacillus속 미생물의 용존황화수소 저감효과와 흰다리새우(Litopenaeus vannamei)에의 영향)

  • Choi, Jun-Ho;Lee, Ji-Hoon;Park, Jung-Jin;Lee, Min-Sun;Bae, Jun-Sung;Shin, Dong-Hun;Park, Kwan Ha
    • Journal of fish pathology
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2018
  • The utility of Bacillus spp. organisms for reduction of dissolved hydrogen sulfide ($H_2S$) in white leg shrimp (Litopenaeus vannamei) culture was tested with different combinations of Bacillus spp. microorganisms: combination A (B. subtilis + B. licheniformis); combination B (B. licheniformis + B. amyloliquefaciens); combination C (B. subtilis + B. licheniformis + B. amyloliquefaciens). Of these 3 combinations, C was effective in few hours after addition whereas B needed longer time to be effective. The $H_2S-reducing$ effect of combination C was dependent on the amount of microorganisms added to $H_2S-containing$ test solution. Exposure of white leg shrimp to $H_2S$ at 8 mg/L for 7 days led to survival of 80% and 1 mg/L for 14 days it was 82.5%. The survival rate was 97.5% when combination C was simultaneously added to shrimp tanks during $H_2S$ exposure at 1 mg/L for 14 days. It was demonstrated that combination C microorganisms (B. subtilis + B. licheniformis + B. amyloliquefaciens) can reduce dissolved $H_2S$ concentrations, and this effect can be utilized to protect white leg shrimp from $H_2S$ toxicity.

Development of the Advanced Manganese-Based Sorbent for Hot Coal Gas Desulfurization (고온 석탄 가스 탈황을 위한 개선된 망간계 탈황제 개발)

  • Shon, Byung-Hyun;Choi, Eun-Hwa;Cho, Ki-Chul;Jeon, Dae-Young;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.291-302
    • /
    • 2000
  • This experiments have been made to develop of manganese-based sorbent for the removal of hydrogen sulfide from hot coal gases. Manganese-based sorbent were tested in an ambient-pressure fixed-bed reactor to determine steady state $H_2S$ concentrations, breakthrough times and feasibility of the sorbent when subjected to cycle sulfidation and regeneration testing. Effects of particle size of sorbent, temperature of sulfidation, regeneration temperature and regeneration characteristics on the $H_2S$ removal efficiency were investigated. Experimental results showed that the $H_2S$ removal efficiency was optimal when the temperature was about $800^{\circ}C$ and the smaller particle size, the better $H_2S$ removal efficiency but in the range of 0.214~0.631mm didn't influence it much. The equilibrium constant(K) is represented as a log(K)=3.396/T-1.1105 and the utilization efficiency of sorbents was about 92% at $800^{\circ}C$. Regeneration in air produced $SO_2$ concentration as high as 8.5% at $800^{\circ}C$, 8.4% at $850^{\circ}C$, and 8.8% at $900^{\circ}C$ and may be used in sulfuric acid production.

  • PDF

Reduction of Sulfur Compounds Produced from Swine Manure, Using Brevundimonas diminuta (Brevundimonas diminuta를 이용한 돈분뇨에서 발생되는 황화합물의 저감)

  • Oh, Min-Hwan;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • Mixed substrate oil cakes are known to emit sulfides, ammonia, and amines. Microorganisms capable of removing odorous gases related to these sulfur compounds were isolated from colonies enriched in vials containing oil cakes and water. Activity tests for hydrogen sulfide and methyl mercaptan reduction were performed to measure the sulfide reduction ratio of the isolates. Control groups were prepared with 0.25 g oil cakes and 10 ml water in a 100-ml vial without inoculation. The experimental groups were prepared similarly, albeit with an inoculum. Hydrogen sulfide removal efficiency of >90% was observed for an isolate, which was identified as Brevundimonas diminuta by 16S rDNA sequence analysis. The sequence was deposited in the Korean Collection for Type Cultures under the accession number KCTC11724BP. B. diminuta could remove up to 200 ppmv standard hydrogen sulfide in 24 hours and demonstrated a maximum hydrogen sulfide and methyl mercaptan removal efficiency of 100% at 453 ppmv and 98 ppmv, respectively, in vial tests. Furthermore, B. diminuta cells in 20% (v/w) medium showed removal efficiency of >85% for sulfur compounds in an odor emission chamber for swine manure.

Combined Effects of Hypoxia and Hydrogen Sulfide on Survival, Feeding Activity and Metabolic Rate of Blue crab, Portunus trituberculatus (꽃게, Portunus trituberculatus의 생존, 섭이활동 및 대사률에 미치는 빈산소와 황화수소의 복합적 영향)

  • KANG Ju-Chan;MATSUDA Osamu;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.549-556
    • /
    • 1995
  • Experiments were carried out to examine the combined effects of hypoxia and hydrogen sulfide on survival, feeding activity and metabolic rata or Blue crab, Portunus trituberculatus. Survival rate of the crab was significantly affected by $\leq2.14mg/l$ dissolved oxygen, and feeding activity was also reduced below 1.41mg/l dissolved oxygen. Metabolic rate of the crab exosed to hypoxia $(\leq3.35mg/l)$ was significantly reduced than that exposed to normoxia. The combined effects of hypoxia $(\leq1.86mg/l)$ and hydrogen sulfide $(12.35 {\mu}g/l)$ on the survival rate were highly toxic than each single effect. Feeding activity was also decreased by the combinedexposure to $\leq1.86mg/l$ dissolved oxygen and $(12.35 {\mu}g/l)$ hydrogen sulfide compared with single effect.

  • PDF

Retention Time Prediction form Molecular Structure of Sulfur Compounds by Gas Chromatography (기체크로마토그래피에서 황화합물의 구조를 통한 용리시간 예측)

  • Kim, Young Gu;Kim, Won Ho;Pak, Hyung Suk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.646-651
    • /
    • 1998
  • The molecular structure of sulfur compounds and the retention relationship are studied by gas chromatography. Analyzed sulfur compounds are, hydrogen sulfide, sulfur dioxide, carbon disulfide, ethyl mercaptan, dimethyl sulfide, iso-propyl mercaptan, normal propyl mercaptan, ethyl methyl sulfide, tert-butyl mercaptan, tetrahydrothiophene, thiophene, and 2-chlorothiophene. Multiple linear regression explains the retention relationship of molecular descriptors. In GC the temperature program is 30$^{\circ}C$ held for 10.5 min, and then increased to 150$^{\circ}C$ at a rate 15$^{\circ}C$/min. Predicted equation for relative retention time (RRT) using SAS program is as follows; $RRT=0.121bp+14.39dp-8.94dp^2+0.0741sqmw-35.78\; (N=8,\; R^2=0.989, \;Variance=0.175,\;F=66.21)$. RRTs are function of boiling point, the square root of molecular weight, molecular dipole moment, and boiling point effects mostly on RRT. The RRT is maximized at the molecular dipole moment of 0.805D, when using nonpolar columns. The planar and highly symmetric compounds are eluted slowly. The square, of correlation coefficient $(R^2)$ using SAS program, is 0.989, and the variance is 0.175 in training sets. For three sulfur compounds, the variance between observed RRTs and predicted RRTs is 0.432 in testing sets.

  • PDF

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

Effects of Pretreatments and Shipping Temperature on Leaf Chlorosis of Cut Lilium Oriental Hybrid 'Siberia' Flowers (오리엔탈 나리 절화 'Siberia'의 잎 황화에 대한 수송온도와 전처리의 효과)

  • Choi, Mok Pil;Joung, Hyang Young;Kang, Yun-Im;Ko, Jae-Young
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.827-833
    • /
    • 2014
  • This study was conducted to investigate the effects of pretreatment and shipping temperature on leaf chlorosis in cut Lilium Oriental hybrid 'Siberia'. Cut lilies were shipped under various temperatures (5, 10, 15, $25^{\circ}C$) for 5 days. When cut lilies were shipped at $25^{\circ}C$, leaf chlorosis was accelerated. However, chlorosis was significantly decreased by shipping at 5 to $15^{\circ}C$. In addition, leaf chlorosis was significantly decreased when the cut lilies were pretreated with a solution containing Promalin (BA + $GA_{4+7}$) as compared to the control. Promalin completely prevented postharvest leaf chlorosis, whereas $GA_3$ and Chrysal SVB were ineffective. Leaf chlorosis decreased more with Promalin dip treatment than with spray treatment. This pretreatment solution also extended the vase life of cut lilies. When cut lilies were pretreated with Promalin, yield (Fv/Fm) of chlorophyll fluorescence was highly maintained. Especially chlorophyll content was significant increased by Promalin treatment. Thus, shipping between 5 and $15^{\circ}C$ and Promalin dip pretreatment significantly decreased leaf chlorosis in cut 'Siberia' lilies.

Gravity Separation Characteristic for the Gold.Silver Ores on the Philippine Mankayan District (필리핀 만카얀 지역 금.은 광석의 비중선별 특성)

  • Kim, Hyung-Seok;Chae, Soo-Chun;Kim, Jeong-Yun;Sohn, Jeong-Soo;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.383-395
    • /
    • 2008
  • To enhance the grade and recovery rate of the gold/silver ores which yield at Philippine Mankayan mine, we studied the characteristics which are the geologic and mineralogical features of gold and silver ore, the liberation by crushing and grinding, the separation by sieving and shaking table. Gold/silver ore is composed of the sulfide minerals like pyrite, sphalerite, galena; and the gangue minerals which is quartz, clay. Gold/silver element are mainly contained in a sulfide minerals like pyrite, sphalerite and galena. To increase the liberation rate of sulfide minerals containing gold/silver element, the gold/silver ore has to be grounded under $100{\mu}m$ very finely because the crystal size of sulfide minerals is distributed from $1{\mu}m$ to $100{\mu}m$. The liberation rate of gold/silver ore increases to 92% when the particle size ($d_{90}$) of ore is grounded below $100{\mu}m$ by jaw crusher $\to$ cone crusher $\to$ rod mill by steps. The grade and recovery of sulfide minerals could not be enhanced by sieving separation because those crystal size is distributed homogeneously below $100{\mu}m$. But, when we separated the sieved ore using shaking table, the gold and silver grade increased to 40 ppm and 140 ppm, respectively. Then the recovery rate of gold reach almost 100% but that of silver is no more that 50%.