• Title/Summary/Keyword: 황산화탈질

Search Result 16, Processing Time 0.026 seconds

A Study on Denitrification by Sulfur-Oxidizing Bacteria for the Industrial Wastewater Contain Fluoride and Nitrogen (불소.질소 함유 폐수의 황산화탈질에 관한 연구)

  • Cho, Nam-Chan;Moon, Jong-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.774-781
    • /
    • 2011
  • Nitric acid and hydrofluoric acid are used for acid pickling in zirconium alloy tubing manufacturing process. Nitrate and fluoride in the wastewater were treated by chemical coagulation and SOD (Sulfur Oxidation Denitrification) process. This study is investigated the effect of fluoride concentration and the optimal condition for SOD process. The limited fluoride concentration for SOD process was below 20 mg F-/L. The adjusted pH and alkalinity by NaOH and $NaHCO_3$ was shown to be more effective for removal of nitrate compared with using NaOH. Furthermore, the microbial activator mixed trace elements and ingredient for alkalinity did not only supplement with alkalinity but also enhance the growth and proliferation for sulfur-oxidizing bacteria. As a result, the inorganic industrial wastewater was successfully treated by the microbial activator in SOD process without continuous addition of seed sludge. Finally, SOD process was shown to remove nitrate in industrial wastewater and to contribute the microbial activator for activation of sulfur-oxidizing bacteria.

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.

Removal of Nitrogen Using by SOD Process in the Industrial Wastewater Containing Fluoride and Nitrogen from the Zirconium Aolly Tubing Production Factory of the Nuclear Industry (원자력산업 지르코늄합금 튜브 생산공장에서 배출되는 불소.질소 함유 폐수의 황산화탈질을 이용한 질소처리)

  • Cho, Nam-Chan;Moon, Jong-Han;Ku, Sang-Hyun;Noh, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.855-859
    • /
    • 2011
  • The main pollutants from zirconium alloy tubing manufacturing process in nuclear industry are nitrate ($NO_3-N$) and fluoride (F-)Nitric acid, and hydrofluoric acid is used for acid pickling. The process for the removal of nitrate and fluoride is composed of 1st chemical coagulation, SOD (Sulfur Oxidation Denitrification) process using sulfur-oxidizing denitrification, and 2nd chemical coagulation. The characteristic of the wastewater treatment is an application of SOD process. The SOD Process is highly received attention because it is significantly different from existing processes for sulfur denitrification. A JSC (JeonTech-Sulfur- Calcium) Pellet is unification of sulfur and alkalinity material. According to result of SOD process in wastewater treatment plant, the removal efficiency of T-N was over 91% and the average concentration of T-N from influent was 147.55 mg T-N/L and that from effluent was 12.72 mg T-N/L. Therefore, SOD process is a useful to remove nitrogen from inorganic industrial wastewater and a new development of microbial activator was shown to be stable for activation of autotrophic bacteria.

Development of Biological Denitrification Process using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 광주과학기술원, 한국과학기술원;한국과학기술원;동명산업
    • Environmental engineer
    • /
    • v.19 s.186
    • /
    • pp.66-73
    • /
    • 2002
  • 우리나라 하수의 특성이 유기물 농도가 질소 농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Development of Biological Denitrification Process Using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 김인수;오상은;범민수;이성택;이창수;김민수
    • Environmental engineer
    • /
    • s.183
    • /
    • pp.70-77
    • /
    • 2001
  • 우리나라 하수의 특성이 유기물 농도가 질소농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소 화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Isolation and Characterization of Sulfur-oxidizing Denitrifying Bacteria Utilizing Thiosulfate as an Electron Donor (황(thiosulfate)을 이용하는 탈질 미생물의 분리 및 특성 파악)

  • Oh, Sang-Eun;Joo, Jin-Ho;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Sulfur-oxidizing bacteria were enumerated and isolated from a steady-state anaerobic master culture reactor (MCR) operated for over six months under a semi-continuous mode and nitrate-limiting conditions using thiosulfate as an electron donor. Most are Gram-negative bacteria, which have sizes up to 12 m. Strains AD1 and AD2 were isolated from the plate count agar (PCA), and strains BD1 and BD2 from the solid thiosulfate/nitrate medium. Based on the morphological, physiological, FAME and 16S rDNA sequence analyses, the two dominant strains, AD1 and AD2, were identified as Paracoccus denitrificans and Paracoccus versutus (formerly Thiobacillus versutus), respectively. From the physiological results, glucose was assimilated by both strains AD1 and AD2. Heterotrophic growth of strains AD1 and AD2 could be a more efficient way of obtaining a greater amount of biomass for use as an inoculum. Even though facultative autotrophic bacteria grow under heterotrophic conditions, autotrophic denitrification would not be reduced.

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.

Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator (소각로 SCR 폐탈질 촉매의 피독과 효율재생에 관한 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.259-263
    • /
    • 2008
  • The catalytic activity of the used catalyst, $V_2O_5/TiO_2$, for MSW incinerators was investigated focusing on its regeneration. As the result of the experimental analysis, the NOx removal efficiency difference between the fresh catalyst and used catalyst is about 60% at $260^{\circ}C$ and 1, 2-dichlorobenzen (1, 2-DCB) removal efficiency difference is about 14% at $200^{\circ}C$, in honeycomb test. And the catalysts, both the fresh and used, were characterized by XRD, TGA, and ICP techniques in order to investigate the deactivation. On the basis of the results, it is found that the used catalyst is deactivated by ammonium-sulfates, heavy metals (Pb, As etc.), alkali metals (Ca), and phase transfer of $TiO_2$. Also calcination treatment under nitrogen and air condition was excellent than washing and calcination treatment.

Air Pollution Effects on Soil Chemical Properties, Lichens, Denitrifying and Sulfur-Reducing Bacteria Around the Yeochun Industrial Estate (여천공단의 대기오염이 토양의 화학적 특성, 지의류, 탈질균 및 황산환원균에 미치는 영향)

  • Yu, Jung-Hwan;Ka, Kang-Hyun;Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.178-185
    • /
    • 1995
  • Air pollution effects on soil chemical properties, denitrifying and sulfur-reducing bacteria and lichens were examined around the Yeochun industrial estate. Soil samples were collected from mountain and/or mountain edges around the Namhae Chemical Corp., which is located at the southern edge of the estate, and sampled plots which were selected at 2km, 4km, 6km, 8km, and 10km apart from the industrial estate. The forest soils around the industrial estate could be classified into the Reddish yellow forest soil group, but soil pH was quite lower than the soils of the group. Because of the extremely low soil pH, microbial activity related to mineralization of organic matter was expected to be very low even though C/N ratio ranged from 15 to 20. As a result, soil organic matter and total nitrogen in soil were relatively high compared to the soils of the group. In general, soil chemical properties around the industrial estate up to 4km apart from the estate were significantly different from the rest(more than 6km apart from the estate) possibly due to air pollution. However, denitrifying bacteria and sulfur-reducing bacteria did not show significant differences in colony forming units by the distances from the industrial estate. By the way, lichens showed distinct differences in frequencies and coverages by the distances from the industrial estate possibly due to air pollution. The corticolous lichens showed more sensitive response to the air pollution compared to the saxicolous lichens.

  • PDF

Evaluation of Air Pollution Effects in Seoul City on Forest Soil at Mt. Namsan by Assay of Denitrifying and Sulfur-Reducing Bacteria (탈질균(脫窒菌) 및 황산환원균(黃酸還元菌) 정량(定量)을 통(通)한 서울의 대기오염(大氣汚染)이 남산(南山)의 토양(土壤)에 미치는 영향(影響) 평가(評價))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.98-104
    • /
    • 1997
  • Soil pollution intensity at Mt. Namsan in Seoul city which was expected to show significant soil contamination due to long-term air pollution was evaluated by comparing soil chemical properties at Mt. Kyebangsan in Hongcheon area as a control, and the bacteria participating in nitrogen or sulfur mineralization were assayed simultaneously in order to evaluate the validity of N and/or S mineralization bacteria as an index of soil contamination. The soil of Mt. Namsan showed 10 times higher concentration of hydrogen ion compared to that of Mt. Kyebangsan, which indicated that the soil had relatively been acidified seriously. Especially, large amount of canons were thought to be leached out from the soil, while the amount of extractable Al was getting larger and larger, which result in serious problems in soil ecosystem of the mountain. I could infer from soil chemical properties of the four study sites that the major reason of soil acidification was SOx deposition. However, the sulfur-reducing bacteria were not significantly different between the two regions, which indicated that the microbial dynamics of the soil ecosystem was not controlled by simple factor, but by multiple factors. By the way, the dynamics of bacteria participating in denitrification process was different between the two regions, which was more active at Mt. Kyebangsan than at Mt. Namsan. Thus, the microbial assay for nitrogen mineralization is desirable to be examined as a tool for evaluating soil health or microbial activity in soil ecosystem.

  • PDF