• Title/Summary/Keyword: 황산염환원균

Search Result 20, Processing Time 0.024 seconds

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR (실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가)

  • Han, Ji-Sun;Seo, Jang-Won;Ji, Won-Hyun;Park, Hyun-Sung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.121-130
    • /
    • 2010
  • Metals and sulfate can be considerably dissolved at low pH condition in the acid mine drainage(AMD) and it would make an environmental problems. There are only few of acid mine drainage treatment systems in Korea which are operating, but these still have an effect on the surrounding stream. In this study, quantification of indicator microorganisms was conducted to judge the environmental impact of AMD on microflora by quantitative real-time PCR in the drainage samples of four mines and the water samples of each surrounding stream. Two species of iron reducing bacteria(Rhodoferax ferrireducens T118 and Acidiphilium cryptum JF-5) were selected for indicator bacteria based on 16S rRNA cloning analysis, and sulfate reducing bacteria(Desulfosporosinus orientus), iron and sulfur oxidizing bacteria(Acidothiobacillus ferrooxidans) and iron oxidizing bacteria(Leptosprillum ferrooxidans) were included into indicator since these were found in the previous studies on the mining area. Thereafter, the comparative analysis of four mines were established by the microbiological variation index and it was determined that the biological environment effect of AMD is highest in Samtan mine which doesn t contain treatment system by the value.

Study on Organic Material Used in Bioreactor for the Treatment of Acid Mine Drainage (산성 광산 폐수 처리용 생물반응기에 사용되는 유기물의 연구)

  • 김경호;나현준;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The change of industrial structure has brought the sharp declination of mine products, and has made many mines closed, which results in environmental pollution by untreated acid mine drainage(AMD). AMD with low pH and high concentration of heavy metals could severely destroy the ecosystem. Many researches have been carried out for the treatment of AMD. In this study, we have treated AMD with oak compost, mushroom compost, sludge cake and cow manure which usually used in AMD treatment systems, and compared the capability of each organic matter. Cow manure and oak compost have been most effective among 4 organic materials. Oak compost removed the heavy metals by ion exchange between Ca-rich particles and soluble heavy metal ions. It also captured the heavy metals using bound functional groups like -OH and -COO-. Sulfate reducing bacteria existing in the cow manure removed effectively heavy metals by producing metal sulfide compound. Therefore, it is effective to use both organic materials in mixture on the treatment of AMD.

  • PDF

Anaerobic Biological Treatment of Abandoned Metallic Mine Drainages with Limestone and Recycling of Papermill and Livestock Sludge (석회석과 제지·축산슬러지를 재활용한 폐금속광산폐수의 혐기성 처리)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.463-473
    • /
    • 2000
  • This research was carried out to investigate chemical pretreatment using limestone in treating abandoned metallic mine drainage with anaerobic biological treatment, and to estimate application of papermill and livestock sludge as carbon sources for SRB (Sulfate Reducing Bacterial. Capacity of anaerobic limestone bed was steeply decreased. But if limestone was utilized as pretreatment process in treating them with anaerobic biological treatment. it could look forward to stabilize system because it did initally neutralize them. Effluent SCOD in R-4 was lower than R-l~R-3 in inital HRT 5day but its concentration was high in HRT 1day after passed time. Therefore in point of durability and supply of organic matter. it seemed that R-4 was useful became organic matter in R-4 was not consumed by excessive degradation within short period. In all reactors, pH was suitable for SRB growth in whole HRT, but on the evidence of ORP, SRB was active after HRT 2day. Fixation trend of heavy meta s showed high as $SO_4{^{2-}}$ reduction efficiency increased, and $SO_4{^{2-}}$ reduction and fixation of heavy metals were relatively high in HET 2day.

  • PDF

Effect of Gypsum Application on Reducing Methane (CH4) Emission in a Reclaimed Coastal Paddy Soil (간척지 논 토양 개량제로서 석고처리가 메탄 배출량 저감에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • BACKGROUND: Gypsum($CaSO_4{\cdot}2H_2O$) is known as an ideal amendment to improve soil quality of the reclaimed coastal land. Since gypsum has very high concentration of electron acceptor like ${SO_4}^{2-}$, its application might be effective on reducing $CH_4$ emission during rice cultivation, but its effect has not been studied well. METHODS AND RESULTS: The effect of gypsum on $CH_4$ emission and rice growth characteristics was studied by pot test, which was packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Chemical-grade gypsum was applied in two soils having EC 2.25 and 9.48 dS/m at rates of 0, 0.5, 1.0 and 2.0%(wt/wt). $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. $CH_4$ emission rate was significantly decreased with increasing salt accumulation and gypsum application levels. With increasing gypsum application, dissolved ${SO_4}^{2-}$ concentration in the leachate water was significantly increased, which might have suppressed $CH_4$ production in soil. Total $CH_4$ flux was dramatically decreased with increasing gypsum application. In contrast, rice yield was increased with increasing gypsum application and then achieved maximum productivity at 1.0% gypsum application in two soils. CONCLUSION(s): Gypsum is a very good soil amendment to suppress $CH_4$ emission in reclaimed coastal paddy soils, and improve rice productivity and soil properties. The optimum application level of gypsum is assumed at ca. 1% to improve soil productivity with reducing effectively $CH_4$ emission during rice cultivation.

A Study on Organic Sludge Application and Duration Estimate for Treating Natural Purification of Acidic Mine Drainage (폐탄광폐수의 자연정화처리를 위한 유기성슬러지 적용 및 지속시간예측에 관한 연구)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.475-484
    • /
    • 2000
  • The purpose of this study was to develop model for estimating biodegrability of organic sludge (sewage and papermill) in various environmental conditions. to assume degradable degree with operating time of SRB reactor. and evaluate duratior of organic sludge as carbon source. Average TCOD was 28.7~63.2mg/L in effluent. organic sludge did not much supply carbon source for experimental period. But in point of durability. it seemed that organic sludge was efficient because it was not consumed by degradation of much organic matter within short period. With increasing $SO_4{^{2-}}$ reduction rate. Pb and Fe was removed 77~82% and 33~59%. respectively. Because Al was precipitated as a hydroxide. its removal rate wa,. about $54{\pm}2%$ in R-l~R-3 maintaining low pH but about 78% in R-4 maintaining high pH. Because Mn was large in solubility. it showed to be much lower than other heavy metals. Considering supportable capacity or durability of orgainc matter for initial SRB mixing ratio of sewage/papermill 0.5 was regarded as appropriate substituting material and at this time. it estimated that carbon source continued about 3.08 year but safety factor must apply to be thought over. because various factors had an effect on degradation of organic sludge.

  • PDF

Characteristics and Roles of the Submerged Separation Membrane in Anaerobic Digestion (혐기성소화에 있어서 침지형분리막의 역학과 특성)

  • Cha, Gi-Cheol;Chung, Hyung-Keun;Noh, Sao-Hong;Seo, Yang-Chan;Kim, Young-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.417-427
    • /
    • 2000
  • The substrate metabolism and bacterial population in an anaerobic digestion with the submerged separation membrane were investigated by using a laboratory-scale reactor at the hydraulic retention time(HRT) 1.0 and 0.5 day. The removal efficiencies of carbohydrate at the HRT 1.0 and 0.5 day were 99.8~99.9% and 98.0~99.6%, respectively. After the 58 days, the mixed liquor volatile suspended solids(MLVSS) concentration at the HRT 1.0 and 0.5 day were approximately 6,050 and 7,750 mg/L, respectively. According to the measurement by the most probable number(MPN) method, the numbers of acidogenic bacteria, $H_2$-utilizing and acetate-utilizing methc.nogenic bacteria were found to be $10^9$, $10^7{\sim}10^8$ and $10^6{\sim}10^8MPN/mL$, respectively. The composition of $CH_4$ in the produced gas was 46~50%. It is suggested that sulfate-reducing bacteria $10^7{\sim}10^8MPN/mL$ play an important role in producing $H_2$ and acetate in sulfate-depleted environment.

  • PDF

Distribution of Sulfate-reducing Bacteria in Landfill Leachate and their Role on Insolubilization of Heavy metals (폐기물매립지 침출수에서 황산염환원균의 분포와 중금속 불용화역할)

  • Jung, Kweon;Shin, Jai-Young;Jung, Il-Hyun;Takamizawa, Kazuhiro;Yoo, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.27-39
    • /
    • 1997
  • This study, collaborated Gifu University, Japan, was performed to analyze chemical pollutants and microorganism and to clarify the distribution of sulfate-reducing bacteria and their insolubilization of heavy metal ions in leachates sampled seasonally between 1994 and 1996 from Nanjido waste landfill site, sampled 4 times between 1995 and 1996 from Pusan and Daejeon waste landfill site, and sampled 1 time between 1992 and 1994 from Hokkaido, Nagoya, Osaka and Hukuoka waste landfill site in Japan. The results were as follows: 1. The temperatures of internal leachate and leachate effluent were 40$\circ$C and 30$\circ$C, respectively, and the pH values of both leachates were about 8.0 at Nanjido waste landfill site. The concentration of SO$_4^{-2}$ gradually increased with the degree of stabilization and that of NO$_3$-N was detected in a part of sampling sites at one and half years, and in all sampling sites at 3 years after completion of landfill. 2. The organic substances in leachate of Nanjido waste landfill site decreased with the degree of stabilization and they were very fluctuated with measuring point and time. The concentration of organic substance and heavy metals in internal leachate were higher than in leachate effluent and those of Cd, Hg, and Pb were lower than detection limit except a part of samples in 1996. 3. APCs in internal leachate and leachate effluent were not much different and the minimum of APCs in internal leachate and leachate effluent were $1.0\times 10^4$/ml and $4.0\times 10^1$/ml, respectively. 4. The maximums of SRBs in Nanjido, Pusan, and Daejeon waste landfill site were 9180 MPN/ml, 24000 MPN/ml, and 348 MPN/ml, respectively and the maximum of SRBs in Japan waste landfill site was 9300 MPN/ml. 5. During 2-week-SRB culture, the values of MPN were high at 50$\circ$C for initial culture period and at 30$\circ$C for last culture period. MPN started to appear at first day and rapidly increased between 7th day and 9th day. 6. Cadmium and copper were insolubilized by SRB within 6 hr and iron and zinc were done within 48 hr. The rates of insolubilization of Cd, Cu, Fe, Zn, T-Cr were 100%, 99.5%, 95.0%, 99.8%, 16.1% after 48 hr treatment with SRB, respectively.

  • PDF

Brucite Treatment to Reduce Phosphorus Release from Polluted Sediments (퇴적물로부터 인 용출 저감을 위한 Brucite 처리)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kwon, Hyuck-Jae;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1180-1185
    • /
    • 2006
  • Lab-scale batch experiments using several 25-L transparent acrylic reactors were conducted to develop optimum capping materials that can reduce phosphorus released from polluted sediments. The sediment used in the experiment was very fine clay(8.8 $\Phi$ in mean grain size), and organic carbon($C_{org}$) content was as high as 2%. Four kinds of batches with different capping materials Brucite($Mg(OH)_2$), Sea sand($SiO_2$), Granular-gypsum($CaSO_4{\cdot}2H_2O$), Double layer(brucite+sand), and one control batch were operated for 30 days. Phosphorus fluxes released from bottom sediments in the control batch were estimated to be 14.6 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, while 9.5 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 5.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 4.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, and 3.1 $mg{\cdot}m^{-2}{\cdot}d^{-1}$ in the batch capped with Sea sand, Granular-gypsum, Double layer, and Brucite, respectively. The results obtained from lab-scale batch experiments show that there were 70% reduction of phosphorus for some materials such as Brucite, Double layer(brucite+sand), and whereas sea sand only about 35%. The pH range of surface sediment to which Brucite was applied showed about $8.0{\sim}9.5$ in the weak alkaline state. This effect can prevent liberation of $H_2O$. The addition of gypsum into the sediment can reduce the progress of methanogenesis because of fast early diagenesis and sufficient supply of $SO_4^{2-}$ to the sediments, stimulate the SRB highly. Therefore, the application of Brucite and Gypsum can reduce phosphorus release from the sediment as a result of formation of $Mg_5(OH)(PO_4)_3$, pyrite($FeS_x$), and apatite-mineral.