• Title/Summary/Keyword: 황산염침식

Search Result 39, Processing Time 0.022 seconds

A Study on the Characteristics of Inorganic Polymer Mortar for Concrete Sectional Rehabilitation (콘크리트 단면복구용 무기성 모르타르의 특성에 관한 연구)

  • Hwang, Tae-Ha;Song, Tae-Hyeob;Im, Chil-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • As concrete structures are exposed to chemical substances, damaged from salt, or progressed to the neutralization, the surface damage of the structures is generated timely fashion, resulting shortened service life. Especially, the sulfate erosion causes rapid surface defects, and the steel skeleton becomes corroded due to the water infiltration, generating stability deterioration of the concrete structure. In this study, the physical characteristics of the acid-resistant mortar with aluminosilicates was investigated in order to resolve problems of the acid resistance, one of the most serious problems of the cement type repair material. As the result of the experiment, the test specimen turned to exhibit almost equivalent physical characteristics with those of concrete sectional repair materials in terms of compressive and bending strengths. As both the cement sectional repair material and the test specimen were immerged in sulfuric acid solution to examine weight changes, the test specimens exhibited only 4% loss of their weights while the cement sectional repair materials reached at the level of 80% or above, proving the excellence acid resistant characteristics of the test specimens. Consequently, the physical characteristics of acid resistant mortar with aluminosilicates were revealed to be superior than those of concrete sectional repair materials. It can be utilized as a sectional repair material where the acidic erosion is anticipated.

Degradation of Cement Mortar with Supplementary Cementitious Materials Submerged in Various Oils (각종 유지류에 침지된 혼화재 치환 시멘트 모르타르의 열화특성)

  • Han, Cheon-Goo;Hwang, Chan-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • There has been a number of research on concrete durability. specially, as a research on chemical ingression, the research on the degradation against acid, alkali, and sulfate has been conducted. On the other hand, for the research on oils, especially, the influence of various oils on cement mortar with Supplementary Cementitious Materials(SCMs) is not sufficiently studied. hence, in this research, the degradation of cement mortar incorporated fly ash and blast furnace slag is researched when the cement mortar is submerged in various oils. For the result of experiment, as the content of fatty acid in the oils, the degradation of cement mortar with SCMs was occurred more, and the cement mortar with SCMs suffered more degradation than the ordinary portland cement regarding the oil submerging.

Effect of Stabilizer on Corrosion and Cavitation Damage in the Sea Water of Electroless Nickel Plating Layer (무전해 니켈도금 층의 해수 내 부식과 캐비테이션 손상에 대한 안정제 효과)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.107-107
    • /
    • 2018
  • 무전해 니켈도금 용액의 성분은 Ni(II)염, 환원제, 적합한 금속 배위 리간드, 안정제 및 특정 특성 요구에 대한 첨가제를 포함한다. 일반적으로 도금 욕에는 미량의 안정제가 함유되어 있다. 만약 적절한 안정화 시스템이 없는 도금 욕에서 도금 공정 시 도금 시작 직후에 많은 양의 니켈 플레이크(Ni flake)가 생성되어 빠르게 도금 용액이 분해되어 더 이상 도금이 어렵게 된다. 그러나 무전해 도금 욕에서 안정제의 역할 및 도금 층에 미치는 영향에 대한 연구는 여전히 부족한 실정이다. 따라서 본 연구에서는 $Pb^{2+}$ 안정제 농도가 도금 층에 미치는 영향과 캐비테이션 침식 실험을 통해 그 내구성을 평가하고자 하였다. 무전해 니켈코팅을 위한 모재는 회주철(FC250)을 $19.5mm{\times}19.5mm{\times}5mm$의 크기로 가공하였다. 회주철의 인장강도는 $330N/mm^2$이며, 그 성분 조성(wt.%)은 3.23 C, 1.64 Si, 0.84 Mn, 0.016 P, 0.013 S 그리고 나머지는 Fe이다. 시험편은 SiC 페이퍼 #1200까지 연마하여 시험편의 표면 거칠기는 $1.6-2.1{\mu}m$ 범위 내로 제작하였다. 무전해 도금 전 시험편은 탈지를 위해 상온의 아세톤 용액에서 3분간 초음파 세척하고, $90^{\circ}C$의 알카리 수용액으로 5분간 세척하였다. 그리고 표면 활성화를 위한 산세척은 5% 황산용액에서 30초 동안 실시하였다. 도금조로 500mL 비커를 사용하였으며, 모든 시험편은 2시간 동안 무전해 니켈도금을 실시하였다. 그리고 니켈도금 층의 내식성과 내구성을 평가하기 위해 전기화학적 분극 실험을 통한 타펠분석과 ASTM G32 규정에 의거한 캐비테이션 침식 실험을 실시하였다. 그 결과 안정제 농도가 도금 속도와 도금 층의 성분 변화에 크게 영향을 미쳤으며, 그에 따라 도금 층의 내식성과 내구성이 크게 변화되었다.

  • PDF

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

Characterization of Durability and Deterioration Eroded by Chemical Attack on the Concrete Lining in Conventional Tunnel (화학적 침식을 받은 재래식 터널 콘크리트 라이닝의 내구성능 및 열화특성)

  • Kim, Dong-Gyou;Lee, Seung-Tae;Jung, Ho-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.25-32
    • /
    • 2007
  • This study is to evaluate the effect of chemical attack on durability and deterioration of lining concrete in tunnel. Surface examination, nondestructive inspection, uniaxial compressive strength test, carbonation test, chloride diffusion test, micro-structural analysis were performed to analyze the deterioration of lining concrete in tunnel constructed 70 years ago. From surface examination results, the tunnel had been repaired and reinforced in several times. It has many cracks, water-leakage, efflorescence and exploitation. Compressive strengths obtained from nondestructive inspection and uniaxial compressive strength test have measured $17.5{\sim}34.7MPa$, and $12.8{\sim}40.3MPa$, respectively. Carbonation depth specimen cored from concrete lining has ranged from 3mm to 27mm. From chloride diffusion test, most specimens have low permeability. And the XRD analysis was able to detect ettringite and thaumasite, which were confirmed by SEM and EDS results to be the causes for the deterioration of lining concrete.

Seismic Fragility of Sewage Pipes Considering Site Response in Korean, Seoul Site (국내 서울지역의 부지응답해석을 고려한 하수도관의 지진취약도)

  • Shin, Dea-Sub;Kim, Hu-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.33-38
    • /
    • 2017
  • The number of damaged lifeline structures have been increasing with urban acceleration under earthquakes. To predict the damage, damage mitigation technology of lifeline structures should be analyzed using damage prediction technology. Therefore, in this paper, the degree of the fragility of structures under an earthquake was evaluated stochastically through an evaluation of the seismic fragility. The aim was to develop damage prediction technology of sewage pipes among the lifeline facilities. The site response was performed using the data from 158 boreholes in Seoul and 7 real earthquake waves to determine the responses in real urban areas. The seismic fragility was deduced through a total of 29822 time history analysis. In addition, sewer pipes were evaluated and the persisting period was passed by applying the research results of strength reduction which is due to sulphate erosion. As a result, the difference in failure probability between 300 and 800 with the smaller diameter of the representative pipes was approximately double and the size of the pipes has a significant effect on the seismic fragility function. Moreover, the failure probability of a seismic load increases by up to 10 fold as the strength reduction rate increases. The results of this study can be used as a means of predicting the damage and countermeasures of sewer pipes and might be reflected in the seismic design of underground facilities.

Experimental Study to Evaluate the Durability of 100 MPa Class Ultra-high Strength Centrifugal Molding Concrete (100MPa급 초고강도 원심성형 콘크리트의 내구성 평가를 위한 실험연구)

  • Jeong-Hoi Kim;Sung-Jin Kim;Doo-Sung Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.12-23
    • /
    • 2024
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. In order to investigate the durability of centrifugally formed PSC square beams to be used as the superstructure of the avalanch tunnel or ramen bridge, the durability performance of ultra-high-strength centrifugally formed concrete with a compressive strength of 100 MPa was evaluated in terms of deterioration and chemical resistance properties.Concrete durability tests, including chloride penetration resistance, accelerated carbonation, sulfate erosion resistance, freeze-thaw resistance, and scaling resistance, were performed on centrifugally formed square beam test specimens produced in 2022 and 2023. Considering the information verified in this study, the durability of centrifugally molded concrete, which has increased watertightness in the later manufacturing stage, was found to be superior to that of general concrete.