• Title/Summary/Keyword: 환자 피폭선량

Search Result 446, Processing Time 0.022 seconds

Chromosomal Aberrations Induced by in Vitro Irradiation of $^{131}I$ ($^{131}I$의 체외 방사선조사에 의한 염색체이상)

  • Kim, Eun-Sil;Kim, Myung-Seon;Seo, Doo-Seon;Jeong, Nae-In;Rho, Seung-Ik;Lee, Jae-Yong;Kim, Chong-Soon;Han, Seung-Soo;Kim, Hee-Geun;Kang, Duck-Won;Song, Myung-Jae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.1
    • /
    • pp.133-140
    • /
    • 1994
  • Recently, there are many considerations and studies on biological effects of radiations in radiation workers, as well as in accidentally or therapeutically irradiated persons. The most practical and reliable method of dosimetry for radiation accidents is the scoring of gross chromosomal aberrations in human lymphocytes (Ydr) as a biological dosimetry. By the way, although usual doses of $^{131}I$ administered therapeutically for thyroid cancer are ranging from 100 mCi to 200 mCi, there are differences of absorbed doses and Ydr, ranging from 0.004 to 0.04, on equally administered $^{131}I$ due to variations in metabolic characteristics, stage of tumors and physical status of subjects. In this study, We exert to obtain the dose-response relationships of $^{131}I$, as a good guide to evaluating acute effects of accidental irradiations and radiation induced leukemia or solid tumor, by in vitro induction of chromosomal aberrations. we studied the relationship between radiation dose (D) and the frequency of chromosomal aberrations (Ydr) obserbed in peripheral lymphocytes that were irradiated in vitro with $^{131}I$ at doses ranging from 0.05 to 6.00 Gy. By scoring cells with unstable chromosomal aberrations (dicentric chromosomes and ring chromosomes) we obtained this linear-quadratic dose response equation Ydr=0.064351 $D^2$-0.13143 D+0.045684 This dose-response relationship may be useful for evaluating acute and chronic $^{131}I$ induced biological effects.

  • PDF

Effective Dose Determination From CT Head & Neck Region (두경부(Head & Neck) CT 검사 시 장기의 유효선량 측정)

  • Yun, Jae-Hyeok;Lee, Kwang-Weon;Cho, Young-Ki;Choi, Ji-Won;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • In this study, we present the measurements of effective dose from CT of head & neck region. A series of dose measurements in anthropomorphic Rando phantom was conducted using a radio photoluminescent glass rod dosimeter to evaluate effective doses of organs of head and neck region from the patient. The experiments were performed with respect to four anatomic regions of head & neck: optic nerve, pons, cerebellum, and thyroid gland. The head & neck CT protocol was used in the single scan (Brain, 3D Facial, Temporal, Brain Angiography and 3D Cervical Spine) and the multiple scan (Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spine+Brain Angiography). The largest effective dose was measured at optic nerve in Brain CT and Brain Angiography. The largest effective dose was delivered to the thyroid grand in 3D faical CT and 3D cervical spine, and to the pons in Temporal CT. In multiple scans, the higher effective dose was measured in the thyroid grand in Brain+3D Facial, Brain+3D Cervical Spine, Brain+3D Facial+Temporal and Brain+3D Cervical Spine+Brain Angiography. In addition, the largest effective dose was delivered to the cerebellum in Brain CT+Brain Angiography CT and higher effective dose was delivered to the pons in Brain+Temporal CT. The results indicate that in multiple scan of Brain+3D Cervical Spine+Brain Angiography, effective dose was 2.52 mSv. This is significantly higher dose than the limitation of annual effective dose of 1 mSv. The effective dose to the optic nerve was 0.31 mSv in Brain CT, which shows a possibility of surpassing the limitation of 1 mSv by furthre examination. Therefore, special efforts should be made in clinical practice to reduce dose to the patients.

Reducing Radiation Exposure During X-ray Imaging of Both Hip AP (엉덩관절 정면 검사 시 환자 피폭 감소)

  • Shin, Seong-Gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • This research has been conducted to investigate the method of reducing patients' radiation exposure during X-ray imaging of Both Hip Ap examination by removing the grid. When using the grid with 60 kV and a non-filter, the Entrance Surface Dose was 4.77 mGy, and the result was highest and 34 times higher than the lowest measurement when removing the grid with 90 kV, and 0.3 mmCu filter. Based on the ICRP Pub. 60 at the level of 70 kV, the Effective Dose of testis and ovary was 0.255 mSv when using the grid, and that result was approximately 5.2 times higher than the 0.049 mSv when removing the grid. Based on the ICRP Pub. 103 at the level of 70 kV, the Effective Dose of testis and ovary was 0.090 mSv when using the grid, and that result was approximately 4.5 times higher than the 0.020 mSv when removing the grid. When using the grid, the range of Exposure Index was 671 to 782, and when removing the grid, the range of Exposure Index was 513 to 606, and both results were at optimal exposure conditions and valid diagnostic imaging after evaluations. Therefore, removing the grid during X-ray imaging of Both Hip Ap will help reduce patients radiation exposure.

A Study of x-ray tube voltage, tube current and dose rate depeding on temperature (온도 변화에 따른 X-선진단장치의 관전압, 관전류, 조사선량에 관한 연구)

  • Chon, Ki-Hwan;Hwang, Min-Seon;Choi, Myeon-Woong;Lee, Song-Yi;Kim, Min-Ji;Yang, Dong-Il;Lee, Gwi-Yeol
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.264-272
    • /
    • 2011
  • This study was function experiment or inspection of diagnosis x-ray unit at the hospital. It's how many changes tube voltage, tube current, DOSE value through the experiment depending on temperature increasing. The study want to know whether which parameter shown out of range or not how about image quality and so on. Increasing tube current and DOSE were not only too many radiation to the patient and radiation workers and make bad images but also the tube should be damaged by heat. This study was recommended proper exposure at intervals of seconds because passed inspection, reduced radiations for patient and the tube used long term. This results in the hospital`s finances will be very helpful.

Dose Assessment in Accordance with the Measured Position of Size Specific Dose Estimates (Size Specific Dose Estimates(SSDE)측정 위치에 따른 피폭선량 평가)

  • Kim, Jung-Su;Hong, Sung-Wan;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.383-387
    • /
    • 2015
  • This study investigated the size specific dose estimates of difference localizer on pediatric CT image. Seventy one cases of pediatric abdomen-pelvic CT (M:F=36:35) were included in this study. Anterior-posterior and lateral diameters were measured in axial CT images. Conversion factors from American Association of Physicists in Medicine (AAPM) report 204 were obtained for effective diameter to determine size specific dose estimate (SSDE) from the CT dose index volume (CTDIvol) recorded from the dose reports. For the localizer of mid-slice SSDE was 107.63% higher than CTDIvol and that of xiphoid-process slices SSDE was higher than 92.91%. The maximum error of iliac crest slices, xiphoid process slices and femur head slices between mid-slices were 7.48%, 17.81% and 14.04%. In conclusion, despite the SSDE of difference localizer has large number of errors, SSDE should be regarded as the primary evaluation tool of the patient radiation in pediatric CT for evaluation.

Estimate of Radiation Doses in MDCT Using Patient Weight (MDCT 검사에서 환자 체중을 이용한 선량 평가)

  • Kwon, Seong-Ohk;Dong, Kyung-Rae;Kweon, Dae-Cheol;Goo, Eun-Hoe;Choi, Ji-Won;Chung, Woon-Kwan
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.246-252
    • /
    • 2010
  • The purpose of this study provides measurements of radiation dose from MDCT of head, chest, abdomen and pelvic examinations. A series of dose quantities that are measured of patient weight to compare the dose received during MDCT examinations. Data collected included: weight together with CT dose descriptors, volume CT dose index (CTDIvol) and dose length product (DLP). The effective dose was also estimated and served as collective dose estimation data. Data from 1,774 adult patients attending for a CT examination of the head (n=520) or chest (n=531) or abdomen (n=724) was obtained from spiral CT units using a same CT protocol. Mean values of CTDIvol was a range of 48.6 mGy for head and 6.9, 10.5 mGy for chest, abdomen examinations, respectively. And mean values of DLP was range of 1,604 $mGy{\cdot}cm$ for head, 250 $mGy{\cdot}cm$ for chest, 575 $mGy{\cdot}cm$ for abdomen examinations, respectively. Mean effective dose values for head, chest, abdominal CT were 3.6, 4.2, and 8.6 mSv, respectively. The degree of CTDIvol and DLP was a positive correlation with weight. And there was a positive correlation for weight versus CTDIvol ($r^2$=0.62), DLP ($r^2$=0.694) in chest. And head was also positive correlation with weight versus CTDIvol ($r^2$=0.691), DLP ($r^2$=0.741). We conclude that CTDIvol and DLP is an important determinant of weight within the CT examinations. The results for this study suggest that CT protocol should be tailored according to patient weight.

Perceptions of Patients and Radiologists on Exposure to Diagnostic Radiation (진단용 방사선 피폭에 관한 환자 및 종사자간 인식도 비교)

  • Kim, Gab-Jung;Hong, Jee-Young;Lee, Moo-Sik;Na, Baeg-Ju;Lee, Jin-Yong;Lee, Boo-Woo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.1072-1075
    • /
    • 2011
  • 이 연구는 진단용 방사선피폭에 대한 환자 및 종사자의 방사선 인식도, 방사선 지식정도, 방사선 피폭의 유해성, 진단방사선의 필요성, 방사선의 피폭방지, 정보파악의 유무 및 파악경로, 방사선 검사 시 심리적 상태에 영향을 미치는 요인을 살펴보고자 하는 연구이다. 2010년 10월 25일부터 11월 10일까지 일개 광역시 소재하는 종합병원 및 의원에 근무하는 방사선사와 2주내에 진단 방사선을 이용한 해당 의료기관에 내원한 환자를 대상으로 총 347부의 유효설문지를 사용 하였다. 방사선에 대한 인식도에 영향을 미치는 요인으로는 환자의 경우, 직업, 2년내 건강검진 경험, 방사선 피폭에 대한 설명을 들은 경험으로 나타났고, 근무자의 경우, 2년내 교육이수 경험으로 나타났다. 방사선에 대한 지식정도에 영향을 미치는 요인으로는 환자의 경우, 2년내 건강검진 경험으로 나타났고, 근무자의 경우, 연령, 근무기관으로 나타났다. 방사선의 유해성에 영향을 미치는 요인으로는 환자의 경우, 성별, 2년내 건강검진 경험, 정보매체로 나타났고, 근무자의 경우, 근무기관으로 나타났다. 방사선의 필요성에 영향을 미치는 요인으로는 환자의 경우, 월소득, 거주지로 나타났고, 근무자의 경우, 결혼상태, 피폭선량계 착용여부, 환자에게 피폭에 대한 설명을 하는 것으로 나타났다. 방사선 피폭방지에 영향을 미치는 요인으로는 환자의 경우, 직업, 월소득, 2년 내 건강검진 경험으로 나타났고, 근무자의 경우 환자에게 피폭에 대한 설명을 하는 것으로 나타났다. 방사선검사의 심리적 상태에 영향을 미치는 요인으로는 환자의 경우, 방사선에 대한 피폭설명을 들은 경험, 직업으로 나타났고, 근무자의 경우, 연령, 경력, 2년내 교육이수 경험으로 나타났다. 그러므로 방사선 종사자들도 방사선의 위해성에 대한 올바른 인식을 하게 하여 방사선 방어를 적극적으로 할 수 있는 행동을 유도하기 위해서는 이용 방사선의 특성에 맞는 방사선 안전 관리 교육 프로그램의 개발과 방사선 종사자 스스로 방사선에 대한 안전성 확보를 위하여 노력해야 할 것이다.

  • PDF

Reducing Methods of Patient's Exposed Dose Using Auto Exposure Control System in Digital Radiography (디지털 방사선장비에서 자동노출제어 사용 시 환자피폭선량 감소 방안)

  • Shin, Seong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • This study was carried out to reduce patient dose through focus-detector distance, kilovoltage, and a combination of copper filters. In the C, L-spine lateral, Skull AP views were obtained by making changes of 60-100 kV in tube voltage and of 100-200 cm in focus-detector distance and by adding a copper filter when using an auto exposure control device in the digital radiography equipment. The incident dose showed 90 kV, 0.3 mmCu in C-spine lateral with 0.06 mGy under the condition of 200 cm; 100 kV, 0.3 mmCu with 0.40 mGy under the condition of 200 cm and 90 kV 0.3 mmCu in Skull AP with the lowest value of 0.24 mGy under the condition of 140 cm. It was observed that entrance surface dose decreased the most when was increased by 150 cm, 70 kV (C-spine lateral), 81 kV (L-spine lateral). It was also found out that as the between the focus-detector increased in the expansion of the video decreased but the difference was not significant when the distance was 180 cm or more. Skull AP showed the most reduction in the entrance surface dose when the tube voltage was changed by 80 kV, 0.1 mmCu, and 120 cm. Therefore, when using the automatic exposure control device, it is recommended to use the highest tube voltage if possible and to increase focus-detector distance at least by 150~200 cm in wall and 120~140 cm in table in consideration of the radiotechnologist's physical conditions, and to combine 0.1~0.3 mmCu and higher filters. It is thus expected to reduce patient dose by avoiding distortion of images and reducing the entrance surface dose.

Analysis of Condition Changing on Dose Variation using Intraoral Radiation Devices (구내 촬영용 방사선 장치의 촬영조건에 따른 선량변화 분석)

  • Kim, Young-Jae;Lee, Yong-Tak;Song, Hyeon-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.137-142
    • /
    • 2012
  • This study is investigated dose change on intra-oral radiography when same conditions under the others unit and same unit under the different exposed conditions. Three different radiation devices were studied. Exposure to the upper anterior, premolar and molar on the variant time and dose measure was using semiconductor radiation dose meter. Obtained film density value was analyzed to the belong in the range of diagnosis. Results for dose of each region were less dissimilar between the maximum and minimum. Its value was different 10 times as many as 3 times. In addition, the range of film density was 2.10 ~ 2.95. These values were exceeded on the allow density of diagnostic value '0.25 ~ 2.0'. Even if the same device and the same condition, measured dose was considerable differance and film density was showed show the inappropriate density range. Those can be caused the patient's re-take and patient's diagnostic errors so patients has affected direct and indirect radiological harm. Therefore, dental radiography devices will be required periodical maintenance and also provided standard on the exposure and processing conditions.

A Consideration of Apron's Shielding in Nuclear Medicine Working Environment (PET검사 작업환경에 있어서 APRON의 방어에 대한 고찰)

  • Lee, Seong-wook;Kim, Seung-hyun;Ji, Bong-geun;Lee, Dong-wook;Kim, Jeong-soo;Kim, Gyeong-mok;Jang, Young-do;Bang, Chan-seok;Baek, Jong-hoon;Lee, In-soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.110-114
    • /
    • 2014
  • Purpose: The advancement in PET/CT test devices has decreased the test time and popularized the test, and PET/CT tests have continuously increased. However, this increases the exposure dose of radiation workers, too. This study aims to measure the radiation shielding rate of $^{18}F-FDG$ with a strong energy and the shielding effect when worker wore an apron during the PET/CT test. Also, this study compared the shielding rate with $^{99m}TC$ to minimize the exposure dose of radiation workers. Materials and Methods: This study targeted 10 patients who visited in this hospital for the PET/CT test for 8 days from May 2nd to 10th 2013, and the $^{18}F-FDG$ distribution room, patient relaxing room (stand by room after $^{18}F-FDG$ injection) and PET/CT test room were chosen as measuring spots. Then, the changes in the dose rate were measured before and after the application of the APRON. For an accurate measurement, the distance from patients or sources was fixed at 1M. Also, the same method applied to $^{99m}TC's$ Source in order to compare the reduction in the dose by the Apron. Results: 1) When there was only L-block in the $^{18}F-FDG$ distribution room, the average dose rate was $0.32{\mu}Sv$, and in the case of L-blockK+ apron, it was $0.23{\mu}Sv$. The differences in the dose and dose rate between the two cases were respectively, $0.09{\mu}Sv$ and 26%. 2) When there was no apron in the relaxing room, the average dose rate was $33.1{\mu}Sv$, and when there was an apron, it was $22.3{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $10.8{\mu}Sv$ and 33%. 3) When there was no APRON in the PET/CT room, the average dose rate was $6.9{\mu}Sv$, and there was an APRON, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $1.4{\mu}Sv$ and 25%. 4) When there was no apron, the average dose rate of $^{99m}TC$ was $23.7{\mu}Sv$, and when there was an apron, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $18.2{\mu}Sv$ and 77%. Conclusion: According to the result of the experiment, $^{99m}TC$ injected into patients showed an average shielding rate of 77%, and $^{18F}FDG$ showed a relatively low shielding rate of 27%. When comparing the sources only, $^{18F}FDG$ showed a shielding rate of 17%, and $^{99m}TC$'s was 77%. Though it had a lower shielding effect than $^{99m}TC$, $^{18}F-FDG$ also had a shielding effect on the apron. Therefore, it is considered that wearing an apron appropriate for high energy like $^{18}F-FDG$ would minimize the exposure dose of radiation workers.

  • PDF