Proceedings of the Korean Statistical Society Conference
/
2005.05a
/
pp.291-298
/
2005
지속성 외래 복막투석은 말기 신부전 환자들에게 널리 시행하는 신 대체 요법으로, 복막투석 환자에게서 주된 합병증으로 일어나는 단백질-열량 영양실조를 치료하기 위하여 아미노산을 복강 내로 주입하는 치료방법이다. 이현석 등(2004)의 연구에서는 아미노산 복막 투석액(IPAA)이 영양실조 환자들에게 실제로 영양상태에 미치는 영향을 평가하기 위하여 지속성 외래 복막투석 환자 43명을 12개월 동안 3개월 주기로 관측하여 얻어낸 반복측정자료를 바탕으로 IPAA의 효과 여부에 따라 반응군과 비반응군을 분류하였다. 본 논문에서는 이러한 두 그룹을 효과적으로 분류할 수 있는 분류기준변수들을 찾아내고 이 분류기준변수의 값을 바탕으로 새로운 환자에게 IPAA의 투여 여부를 진단할 수 있는 여러 분류방법들을 고찰하여 비교 연구하였다. 모수적인 방법으로 선형판별분석, 이차판별분석 및 로지스틱 판별분석을 소개하고 비모수적인 방법으로 support vector machine(SVM)을 소개하여 분류분석의 결과를 비교하여 두 그룹을 최소한의 오류로 분류하는 방법을 제안하였다.
To develop a technique classifying patients based on computerized clinical data followed by validity verification by comparing with nurse's examination. Class scores were determined by nurses for a day on 348 resident patients in 7 wards of a general hospital according to KPCS-1. The class scores were simultaneously evaluated by reviewing the computerized clinical data acquired from the hospital management information system. These two class scores were both significantly different among different departments as well as disease patterns. Intraclass correlation analysis resulted a very high correlation coefficient of 0.96(p<0.01) between the two scoring methods, but the clinical data scores were somewhat higher. An automated patient classification system seemed possible to be developed in future with further enhancement of the present results based on computerized clinical data without manual scoring, which can be applied for performance evaluation as well as workforce planning.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.314-316
/
2009
본 논문에서는 사상체질분류검사 설문지를 이용하여 사상체질을 진단할 때, 진단의 정확도를 향상시키기 위한 사상체질 분류 함수를 개발하기 위하여 퍼지 분류기를 이용한다. 본 연구에서 사용하는 데이터는 9개 한의과대학의 10개 부속한방병원에서 치료를 받은 환자들 중 각 병원의 사상체질전문의로부터 체질진단을 받고 최소한 4주 이상 사상체질 처방을 사용한 후 주 증상이 전반적으로 호전되어 체질이 확인된 환자 1,914명을 대상으로 하고 있다. 본 연구는 사상체질의학의 광제설을 토대로 환자의 성별을 분리 하였을 뿐만 아니라, 비만도를 추가적으로 분류하였으며, 체형기상, 용모사기, 성질재간, 병증약리 중 체형기상을 토대로 분류하였으며, 사상체질을 판별할 수 있도록 설계되고 구현되었다.
Purpose: In the event of mass casualties, triage must be done promptly and accurately so that as many patients as possible can be recovered and returned to the battlefield. However, medical personnel have received many tasks with less manpower, and the battlefield for classifying patients is too complex and uncertain. Therefore, we studied an artificial intelligence model that can assist and replace medical personnel on the battlefield. Method: The triage model is presented using reinforcement learning, a field of artificial intelligence. The learning of the model is conducted to find a policy that allows as many patients as possible to be treated, taking into account the condition of randomly set patients and the medical capability of the military hospital. Result: Whether the reinforcement learning model progressed well was confirmed through statistical graphs such as cumulative reward values. In addition, it was confirmed through the number of survivors whether the triage of the learned model was accurate. As a result of comparing the performance with the rule-based model, the reinforcement learning model was able to rescue 10% more patients than the rule-based model. Conclusion: Through this study, it was found that the triage model using reinforcement learning can be used as an alternative to assisting and replacing triage decision-making of medical personnel in the case of mass casualties.
본 연구는 당뇨인지환자들의 당뇨 조절에 관계되는 요인들을 포괄적으로 반영하는 집단으로 분류한 후 이를 기반으로 보다 효율적인 당뇨관리사업을 할 수 있는 기초자료를 제공하기 위해 수행되었다. 연구를 위해 2007년, 2008년도 국민건강영양조사를 통해 검진에 참여한 당뇨인지환자 666명의 자료를 수집하여 분석하였다. 당뇨인지환자의 관리행태에 대한 군집분류는 K-means 기법을 이용하였다. 당뇨인지환자의 군집은 건강행태사업 대상군, 중점관리사업 대상군, 합병증검사사업 대상군으로 분류되었다. 당뇨 조절율을 높이기 위해서는 각 군집의 특성에 따라 보다 특화된 당뇨관리 프로그램이 적용되어야 할 것이다.
Delayed treatment of acute cardiovascular and cereb-directrovascular diseases is related to poor prognosis and sequelae. For rapid and adequate treatment, role of prehospital emergency dispatchers for adequate triage and selection of hospital is important. In several advanced countries, emergency dispatchers use standardized protocols for decision of rescuer resources or distribution of patients at each hospital. ut, there has not been developed standardized protocol for emergency dispatchers in Korea. We developed standardized protocol based on NHS-direct and CTAS system for triage of symptoms of chest pain and Stroke. Groups with standardized protocol and without protocol was compared to triage result at emergency department which patient visited. The accuracy of triage on chest pain was 70.0% in group A, 94.0% in group B(p<0.01). The accuracy of triage in stroke symptoms was 64.2% in group A, 84.6% in group B(p<0.01). Conclusion: In this study, the accuracy of telephone triage with the protocol was more accurate than without the protocol. But, more studies are needed to generalize the protocol in South korea.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.9-17
/
2021
In this study, we propose a part of the CDSS(Clinical Decision Support System) study, a system that can classify chemotherapy, one of the treatment methods for colorectal cancer patients. In the treatment of colorectal cancer, the selection of chemotherapy according to the patient's condition is very important because it is directly related to the patient's survival period. Therefore, in this study, chemotherapy was classified using a machine learning algorithm by creating a baseline model, a pathological model, and a combined model using both characteristics of the patient using the individual and pathological characteristics of colorectal cancer patients. As a result of comparing the prediction accuracy with Top-n Accuracy, ROC curve, and AUC, it was found that the combined model showed the best prediction accuracy, and that the LGBM algorithm had the best performance. In this study, a chemotherapy classification model suitable for the patient's condition was constructed by classifying the model by patient characteristics using a machine learning algorithm. Based on the results of this study in future studies, it will be helpful for CDSS research by creating a better performing chemotherapy classification model.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.265-267
/
2004
경제 여건의 향상 및 생활양식의 변화로 최근 우리나라에서도 당뇨병 환자가 늘어남에 따라 당뇨병의 예측 및 치료가 중요한 관심사가 되고 있다. 본 논문은 1993년과 1995년 두 차례에 걸쳐 경기도 연천 지역 주민들의 여러 가지 신체 지수 등을 조사한 데이터를 대상으로, 1차 년도의 데이터로부터 동일한 환자가 2차 년도에 정상상태를 유지하는지 흑은 당뇨병으로 진행이 되는지를 예측하는 문제를 다룬다. 혈당량, 허리둘레 등의 수치가 당뇨병의 발병에 영향을 끼치는 것은 알려진 사실이므로, 현재의 데이터로부터 앞으로의 발병 가능성을 예측하는 것이 가능하며, 이는 환자에게 보다 정확한 정보를 알려줄 수 있으므로 의미가 있는 일이다. 예측을 위해 본 논문에서는 분류기를 사용하며, 예측율을 높이기 위해 여러 분류기를 BKS로 결합하였다. BKS (behavior knowledge space) 결합 방법은 분류기간의 독립 가정이 필요 없으며, 데이터 크기가 크고 전형적인 경우에 좋은 결과를 낼 수 있는 방법이다. BKS 결합 방법을 통해 실험을 해본 결과 단일 분류기로 실험을 한 결과보다 향상된 성능을 얻을 수 있었으며, 투표 결합 방법과 비교하여 더 좋은 성능을 보였다.
This study is to define the hemodiafiltration treatment compliance indicators and discriminate standards for hemodiafiltration patients and development of hemodiafiltration treatment compliance measurement-convergent form. Date was collected from 300 on-line hemodiafiltration patients. To verify the hemodiafiltration treatment compliance indicators and discriminate standards, used construct validity and content validity by clinical professional group. Discriminant ability of 3 indicators-interdialysis weight gain rate(IWGR), serum phosphate level, rate of self change of total hemodiafiltration treatment time(SCR-HEFTT)- is 95.6%(wilks ramda=.256, p=.002). And hemodiafiltration treatment compliance measurement-convergent form has 91.7% discriminant accuracy. Hemodiafiltration treatment compliance is important that nurses can aware pre-stage of complication and give appropriate nursing intervention. Also this measurement can be used for foundation data of the nursing intervention development that prevent dialysis patient's complication.
As medical treatment is developing with technology, the men's average life expectancy is extended. Therefore, primary medical care becomes emphasized in order to reduce the medical expenses in the long term by satisfying individual's life being healthy. The date for this thesis was collected from January 2011 to June 2011. 889 patients who visited the university hospital emergency room and hospitalized in internal medicine, were picked as the research subjects and they were targeted to be recorded the distribution of chief complaint and principal diagnosis of the patients. Also, this record was used to apply to the standard Classification of Diseases(as known as ICD) and the method of detailed classification of the primary medical care(as known as ICPC) to compare each other. In order to analysis, frequency analysis was used to see vital statistics and the cross tabulations were used to see the distribution of chief complaint according to ICD and ICPC. Results of the research were Abdominal pain(17.7%), Dyspnea(13.5%), Fever (12.5%), and Haematemesis (9.8%), and those symptoms represented the 54.5% of overall chief complaints that is treated in primary care. Therefore, it is acceptable to use the classification of the primary medical care at doc-in-a-box. Also, in case of diagnosis of abdominal pain, it is classified to R10 in ICD and 116 patients(18.7%) belonged to it, but according to ICPC, it is subdivided to Epigastric(11.5%) and General(5.8%). ICPC classification, which is focused to primary medical care is more detailed than ICD classification. Because the data that is collected for this thesis is from only one hospital, it is hard to represent to all the cases, but ICPC in emergency medical care, it has more classification available and it can subdivide the patients effectively, so it is meaningful.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.