• Title/Summary/Keyword: 환원성

Search Result 2,740, Processing Time 0.027 seconds

Effects of Cooking Methods with Different Heat Intensities on Antioxidant Activity and Physicochemical Properties of Garlic (열처리 조리방법이 마늘의 항산화 활성과 이화학적 특성에 미치는 영향)

  • Jo, Hyeri;Surh, Jeonghee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1784-1791
    • /
    • 2016
  • Garlic was subjected to eight different cooking methods (raw, boiling, steaming, microwave cooking, deep-frying, oven-roasting, pan-frying, and pan-roasting) utilized for typical Korean cuisine. Garlic was analyzed for antioxidant activities and physicochemical properties to elucidate effects of cooking. Garlic cooked at higher temperatures showed significantly lower lightness and higher yellowness (P<0.001). In particular, deep-frying and pan-frying resulted in lowest lightness and soluble solid content, indicating that non-enzymatic browning reactions were more facilitated. Compared with raw garlic, all cooked garlic tended to have lower thiosulfinates, presumably due to decomposition into polysulfides and/or leaching into cooking water and oil. Microwave cooking retained organic acids, total reducing capacity, and flavonoids, which can be attributed to low microwave intensity and shorter cooking time under which heat-labile bioactive components might have undergone less decomposition. Cooking significantly increased metal-chelating activity (P<0.001). In addition, oven-roasting and pan-roasting enhanced total reducing capacity and flavonoid content, indicating that thermal treatments increased the extractability of bioactive components from garlic. However, boiling, deep-frying, and pan-frying, in which garlic is in contact directly with a hot cooking medium, reduced antioxidant activities. Deep-frying resulted in largest reduction in DPPH radical scavenging activity of garlic, which correlated well with reduction of total reducing capacity and flavonoid content. The results show that the antioxidant activity of garlic could be affected by cooking method, particularly heat intensity and/or direct contact of the cooking medium.

Effects of Tributyltin in vitro on Hepatic Monooxygenase System in Marine Fishes (유기주석화합물이 해산 어류의 간장 MFO 효소계에 미치는 영향)

  • 전중균;이미희;이지선;심원준;이수형;허형택
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • Effects of tributyltin chloride (TBTC) in vitro on mixed function oxygenase (MFO) system on liver microsome of eight marine fish species were investigated. To determine the effects on MFO system, cytochrome P45O (CYP) and cytochrome b5 con-tents, activities of two reductases (NADH-cytochrome b5 reductase and NADPH-cy-tochrome P450 reductase) and four dealkylation enzymes (EROD, PROD, MROD and ECOD) were measured in fish microsoms exposed to TBTC for 20 min. The WP content was reduced to 10% of the control group in 6 out of 8 species exposed to TBTC, whereas there was no significant change in the cytochrome bs content. the response of NAD(P)H dependant reductases depended on fish species. The dealkylation enzyme activities in microsome were also apparently inhibited by TBTC. The degree of inhibition was different among fish species and four enzymes. The EROD activities in eight species were decreased to the range of 1∼65% of control group.

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination (촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해)

  • Kim, Seonbyeong;Park, Sangyoon;Choi, Wangkyu;Won, Huijun;Park, Jungsun;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

The Hydrogen Reduction Behavior of MoO3 Powder (MoO3 분말의 수소환원거동)

  • Koo, Won Beom;Yoo, Kyoungkeun;Kim, Hanggoo
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The hydrogen reduction behavior of molybdenum oxides was studied using a horizontal-tube reactor. Reduction was carried out in two stages: MoO3 → MoO2 and MoO2 → Mo. In the first stage, a mixed gas composed of 30 vol% H2 and 70 vol% Ar was selected for the MoO3 reduction because of its highly exothermic reaction. The temperature ranged from 550 to 600 ℃, and the residence time ranged from 30 to 150 min. In the second step, pure H2 gas was used for the MoO2 reduction, and the temperature and residence time ranges were 700-750 ℃ and 30-150 min, respectively. The hydrogen reduction behavior of molybdenum oxides was found to be somewhat different between the two stages. For the first stage, a temperature dependence of the reaction rate was observed, and the best curve fittings were obtained with a surface reaction control mechanism, despite the presence of intermediate oxides under the conditions of this study. Based on this mechanism, the activation energy and pre-exponential were calculated as 85.0 kJ/mol and 9.18 × 107, respectively. In addition, the pore size within a particle increases with the temperature and residence time. In the second stage, a temperature dependence of the reaction rate was also observed; however, the surface reaction control mechanism fit only the early part, which can be ascribed to the degradation of the oxide crystals by a volume change as the MoO2 → Mo phase transformation proceeded in the later part.

An Experimental Study on the Effect of Reduced Slag and Gypsum on Concrete at Low Temperature(-5℃) (저온(-5℃)에서의 환원슬래그 및 석고가 콘크리트에 미치는 영향에 관한 실험적 연구)

  • Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom;An, Dong-Hee;Choi, Si-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, the development of concrete preventing initial frost damage and durability about that were evaluated by using anti-aging agent and admixture(reduced slag). As a result of experiment, initial hydration heat was increased by $C_{12}A_7$ of reduced slag components but it was not effective to development of strength. Also fluidity decreased with increasing replacement of reduced slag. This suggested that fluidity was low by rapid setting due to absent of gypsum in reduced slag components. In case of CR2G specimen that added 4% gypsum, the flow ability was higher than plain. It is considered that concrete developed using reduced slag should use $SO_3$. Result of durability experiments, the durability decreased with increasing replacement amount of reduced slag.

Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments (혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화)

  • Hyun Junc-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

COMPARATIVE STUDY ON THE CLINICAL AND RADIOGRAPHIC FINDINGS OF TEMPOROMANDIBULAR JOINT DYSFUNCTION PATIENTS (악관절 기능장애 환자의 임상적 방사선학적 소견에 관한 비교 연구)

  • Koh Kang;Ahn Hyung-Kyu
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.21 no.1
    • /
    • pp.33-44
    • /
    • 1991
  • 악관절 기능장애 환자 118명을 대상으로 하여 임상적으로 악관절 잡음, 개구량, 동통 및 병력을 조사하고 골변화 양상 및 악관절내에서의 과두위치 등을 방사선학적으로 관찰하였으며, 조영술식을 이용하여 악관절내의 원판 위치 및 천공등을 관찰하여 이들 조사결과를 비교 검토한 결과 다음과 같은 결론을 얻었다 1. 악관절 기능장애 환자에서 악관절부위의 골변화는 환자의 병력과 밀접한 관계가 있었다. 2. 최대 개구시 40㎜미만을 개구하는 환자에서 더욱 심한 골변화를 보였다. 3. 악관절 기능장애 환자의 교합상태에서 과두가 악관절강의 후방에 위치한 경우 개구시 더욱 쉽게 과두가 관절융기 전방으로 이동하였으며, 교합시 과두가 전방에 위치한 경우 후방에 위치한 경우보다 더욱 심한 골변화양상을 보였다. 4. 교합시 관절간격의 감소는 과두의 악관절내 어떠한 위치보다 병변이 진행된 상태였다. 5. 5. 비환원성 내장증 환자의 특징적 증상은 clicking후 개구장애를 나타내었으며 비환원성 내장증을 환원성 내장증보다 더욱 진행된 상태였다

  • PDF

Characterization on corrosion damage of nickel alloy for nuclear energy instrument by chemical decontamination solution (원전기기용 니켈합금강의 화학제염용액에 따른 부식손상 특성 규명)

  • Park, Il-Cho;Yang, Ye-Jin;Jeong, Gwang-Hu;Lee, Jeong-Hyeong;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.135-135
    • /
    • 2017
  • 제염기술은 원자력발전소의 순환계통장치 및 기기류의 방사성 오염물질을 제거하는 기술이다. 현재 국내 원전의 설계 수명 및 유지보수 시기가 도래함에 따라, 작업 전 작업자의 방사선 피사량을 극소화하기 위한 제염 기술이 주목을 받고 있다. 제염 방법에는 크게 기계적 제염과 화학약품을 사용하는 화학제염이 있다. 그 중 화학제염은 복잡한 구조의 제염 대상물에 대한 큰 효과 및 간단한 공정 때문에 주로 사용되고 있다. 제염 시 방사성 산화물과 오염성분을 제거하기 위해 강산 또는 강알칼리의 화학용액이 사용된다. 강한 화학약품을 사용함으로써 큰 제염효과를 얻을 수 있는 반면, 금속 재료의 부식에 대한 구동력도 커지게 된다. 금속 재료의 경우, 강한 부식성 환경에서 공식(pitting corrosion) 및 입계부식(intergranular corrosion)형태의 손상이 크게 발생하기 때문에, 제염공정 시 사용되는 화학용액에 대한 재료의 건전성 검증이 반드시 필요하다. 본 연구에서는 원전기기용 재료인 니켈합금강 Inconel600의 화학제염 시 시험공정 3가지에 대한 부식손상 특성을 규명하였다. 산화공정은 $HMnO_4$ 실험용액을 공통으로 사용하였으며, 산화공정 종료 후 환원공정은 각 시험공정에 따라 환원공정 1은 2000ppm $H_2C_2O_4$, 환원공정 2는 1500ppm $H_2C_2O_4$ + 500ppm $H_8C_6O_7$, 그리고 환원공정 3은 3000ppm $H_2C_2O_4$ 실험용액을 각각 투입하여 수행하였다. 산화, 환원공정을 1Cycle로 하여 온도 $75^{\circ}C$로 유지된 용액에 각 2시간씩 침적하였다. 각 시험공정 별로 총 5Cycle을 실시하였다. 각 시험공정 Cycle종료 후 시험편을 취외하여 무게감량측정, SEM(Scanning electron microscope)분석, 3D현미경분석 그리고 타펠분극 실험을 실시하였다. 각 분석결과를 토대로 하여, 니켈합금 Inconel600에 대한 화학제염 시 시험공정에 따른 부식특성을 규명하였다.

  • PDF

공존이온과 회수된 촉매의 재사용이 질산성질소 환원처리반응성에 미치는 영향

  • An, Sam-Yeong;Jeon, Se-Ung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.237-238
    • /
    • 2008
  • Pd/Cu/Alumina 촉매와 포름산을 이용한 질산성질소의 환원반응에 수체에 공존하는 여러 이온들이 영향을 줄 수 있다. 조사대상 이온 중 염소이온이 가장 부정적인 영향을 주었으며, $PO_4^{3-}$가 가장 적은 영향을 미쳤다. 한편 촉매를 재사용한 경우 질산염 환원반응은 새 촉매를 사용하였을 때 비해 약 80%의 성능을 나타내었다.

  • PDF