• Title/Summary/Keyword: 환산압력

Search Result 45, Processing Time 0.029 seconds

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases (플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

Evaluation of Peak Overpressure and Impulse Induced by Explosion (폭발에 따른 최대과압 및 충격량 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.28-34
    • /
    • 2016
  • Empirical model, phenomenological model, and CFD model have been used to evaluate the blast effects produced by explosion of explosives, flammable gas and liquid or dust. TNT equivalence method which is one of empirical models has been widely used as it is simple. In this study, new peak overpressure-scaled distance and scaled impulse-scaled distance equations are induced through fitting data from the curves given by TNT equivalence method. If the TNT equivalent mass is calculated, it is possible to estimate the peak overpressure and impulse using the regression equations. Differences of peak overpressure with yield factor which is a component of TNT equivalence method are found to be great in near-by distances from explosion source where the increase in overpressure is very steep, but the differences are getting smaller as the distances increase.

A Suggestion of Simplified Load Formula for Blast Analysis (폭발해석을 위한 간략 폭발하중 제안식)

  • Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2016
  • In this paper, a pressure-time history curve of blast load and Conwep model are presented, and a simplified blast load formula is suggested. Generally, a blast load are applied as a pressure-time history curve, and it is calculated by blast load formula such as Conwep model. The Conwep model which is used in most of the blast analysis is quiet difficult to calculate because of its complex process. Therefore, a simplified formula is proposed to calculate blast load by simple rational expressions and to make a simplified pressure-time history curve. In this process, a curve fitting method was used to find the simple rational expressions. The calculation results of the simplified formula have an error of less than 1% in comparison with the Conwep model. And, blast analyses using finite elements method are accomplished with the Conwep model and simplified formula for verification.

Characteristics of Liquid Fuel Jet Injected into Supercritical Environment (초임계 환경으로 분사되는 액체 연료 제트의 분사 거동 특성)

  • An, Jeongwoo;Choi, Myeung Hwan;Lee, Jun;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.333-338
    • /
    • 2022
  • The single jet of decane/methylcyclohexane mixed fuel that is surrogate for kerosene was injected into supercritical environment and visualized using shadowgraph technique. The injection pressure drop of the fuel jet of Tr = 0.484 was kept constant at 0.5 MPa and the experiment was conducted above the critical point of the mixed fuel, and the reduced temperatures of the chamber was changed from 1.00 to 1.23, and the reduced pressures was 1.00 and 1.38. As an index for reducing the density of jets sprayed into the supercritical environment, the brightness intensity of the post-processed jet image was observed with the internal temperature and pressure of the chamber. It was confirmed that the decrease in the brightness intensity of the jet when the temperature inside the chamber increased, and when the pressure inside the chamber was higher at the same temperature, the decrease in the brightness intensity of the jet was delayed. When the pressure inside the chamber is high, it is thought that the change in brightness intensity is delayed due to the increase in the pseudo-critical temperature of the fuel and the increase in the temperature required to reduce the density of the fuel jet.

Pressure Vessel Codes (壓力容器技術基準의 解說)

  • 송달호
    • Journal of the KSME
    • /
    • v.18 no.4
    • /
    • pp.35-40
    • /
    • 1978
  • 여기서 상기 ASME Code에 대하여 간단히 설명하기로 한다. ASME Code 는 첫부분에서 ASME Code의 적용을 받아야 하는 압력용기를 정의하고, 압력용기의 건설에 관한 일반원칙을 설명한후 그 다음에는 세개의 Subsection으로 나뉘어져 있다. 즉 Subsection A General Requirements Subsection B Requirements Pertaining to Methods of Fabrication of Pressure Vessels Subsection C Requirements Pertaining to Classes of Material 여기서 Subsection A는 압력용기 재료나 제작방법의 상위와 관계없이 적용하여야 할 일반적인 요구사항을 규정한 것이며, Subsedction B에서는 압력용기의 제작방법을 용접,리벳팅,단조,경납 땜의 4가지로 나누어 각 제작방법에 따른 특수 요구사항을 규정하였고, 마지막으로 Subsection C 는 재료에 따른 특수 요구사항을 규정한 것이다. 이 각 Subsection은 다시 General, Materials, Design, Fabrication, Inspection and Tests, Stamping and Reports, Pressure Relief Devices로 나누어 이에 대한 각각의 요구사항들을 설명하고 있다. 그러나 이 기술기준에서는 제정방향으로, 다음의 목차에서도 알 수 있는 바와 같이 이들의 순서를 바꾸어 총칙,재료,설계,제작, 검사 및 시험, 압력릴리프장치를 배치한 후 이미 KS B 6231에 제정되어 있는 것은 그 규정을 대부분 그 대로 인용하였고, 그렇지않은 것은 우리의 실정을 참작하여 삭제, 보완, 수정하였다. 삭제한 내용 중 대표적인 것으로 공인검사관(Authorized Inspector) 및 Stamping and Reports 에는 9개의 Mandatory Appendix 와 16개의 Nonmandatory Appendix가 있는데, 이둘 중 이 기술기준에서 필요하다고 생각되는 것은 발췌 수록하였다. 단위에 대해서는 국가시책에 따라 메트릭 시스템을 사용하였고 단위의 환산에서 야기되는 소수점등의 처리는 공학적인 판단에 의거하였다.

  • PDF

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid (초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화)

  • Song, Juyeon;Choi, Myeung Hwan;An, Jeongwoo;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2021
  • Based on surrogate model, a hydrocarbon mixture was analyzed by visualizing the impinging break up mechanism in subcritical and supercritical conditions. Decane and methylcyclohexane with different critical pressures and temperatures were selected as experimental fluids. The impinging injector was installed inside the chamber, and the spray was visualized through a speed camera in subcritical and supercritical conditions. The injection condition of the mixture and chamber was kept constant at Pr(P/Pc) = 1, and Tr(T/Tc) was increased from 0.48 to 1.02. As Tr increased, the spray angle increased, and the sheet length decreased as the properties of the mixture reached each critical point. In addition, when the mixture approached the near critical point, it was shown that the change in density gradient was largely observed out of the impinging break up mechanism.