• Title/Summary/Keyword: 환기.공조시스템

Search Result 52, Processing Time 0.025 seconds

A Prediction on Indoor Contaminant Diffusion Characteristics of a Training Ship by Mechanical Ventilation System (기계식 환기시스템에 의한 선내 오염물질 확산 특성 예측)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1124-1131
    • /
    • 2011
  • This study performed the prediction about the indoor contaminant's diffusion characteristics which can be affected by the mechanical ventilation system on a training ship. The results are as followings. It is clear that the contaminants are spread to most of the indoors, regardless of the contamination beginning zone. About 65~100 minutes later, the contaminant densities of whole indoor zones are evaluated as clean. Comparing the contamination beginning zone being located at higher deck(scenario A) to the contamination beginning zone being located at lower deck(scenario B), although the contaminant density by scenario A is 10 times higher than that by scenario B, the number of contaminated zones are 50% less. The contaminant densities are evaluated as to be rapidly decreased when the outside air induction ratio against design volume is over 75%.

A Study on Reducing Method for Stack Effect in High-rise Building (고층 건축물 연돌효과 저감 방법에 대한 연구)

  • Kim, Jin Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.66-66
    • /
    • 2011
  • 중위도 이북의 건물에서 고층건물의 혹한기 연돌효과는 건물의 여러 가지 기능에 큰 영향을 미치며, 승강기 승강로는 화재시 차압 때문에 연기의 주된 전파통로가 된다. 외피의 밀폐성능을 높여 건물 내부의 연도효과를 줄일 수 있으나, 외피의 밀폐기능은 비상시 피난을 위해 피난경로를 개방하는 순간 일시에 무력화된다. 또한 건물 외피의 밀폐성능이 우수할수록 연돌효과 그 자체로써 건물외피에 미치는 구조적 영향이 커진다. 고층부의 연돌효과는 외피를 밖으로 밀어내는 작용이므로 풍하측에서는 마이너스 풍압에 더하여 건물 외피에 부담을 증가시킨다. 그러므로 고층건물에 발생하는 혹한기 연돌효과의 영향을 정리하자면 다음과 같다. ${\bullet}$ 건물 외벽 및 창문에 미치는 구조적 영향 ${\bullet}$ 제연 시스템의 기능 저해 ${\bullet}$ 승강기 문 개폐 장애와 소음 등 설비 기능의 부정적 영향 ${\bullet}$ 공조기능 장애 ${\bullet}$ 화재시 승강기 승강로 등 수직 샤프트를 통한 연기 전파 혹한기 건물 안팎의 온도차가 40K일 때 높이 600m인 초고층 건물 최상층에 발생하는 연돌효과에 의한 차압은 풍속으로 환산할 때 32m/s에 달한다. 그러므로 초고층 건물 설계시에는 최상층의 풍하측에 설계상의 예상 최대풍속에다 이러한 환산풍속을 더한 고속 풍력이 창문을 밖으로 밀어내는 것으로 보아야 한다. 또한 공조 및 환기시스템에서는 이러한 차압을 고려하지 않으면 고층부에서 환기 성능이 무력화될 수 있다. 다음과 같은 방법들을 이용하여 고층건물의 연돌효과를 효과적으로 줄일 수 있다. 1) 계단실의 연돌효과 저감 방법 계단실에 발생하는 연돌효과에 의한 차압은 계단실에 상승기류를 발생시킨다. 이러한 차압과 상승기류는 계단실 상하부를 개방하면 자연적으로 평형을 이루게 되므로 별도의 제어가 필요 없게 된다. 또한 화재감지기와 연동하여 상하부 외벽의 개구부를 열어두게 되면 피난상황에 따라 문이 여닫힘으로써 발생하는 압력상태의 변화를 고려할 필요가 없게 된다. 2) 승강기 승강로의 연돌효과 승강로의 상하부에 대규모 개구를 두면 대규모의 외기가 도입되어 상승 유동 후 배출되므로 승강로 내부 온도 저하로 연돌효과가 저감되고, 승강로로 유입된 연기는 대규모의 외기에 희석되어 농도가 낮아지고 대부분 외부로 배출된다. 3) 샤프트 복합효과를 이용하는 방법 거실 평면적에 비해 승강기나 계단이 아주 많고 누설틈새 등 개구의 면적 합계가 크면 샤프트들이 서로 복합효과를 이루어 연돌효과에 의한 차압이 줄어든다. 연돌효과 제어용 샤프트를 하나 더 보조적으로 설치함으로써, 보조샤프트에 의해 발생하는 차압으로 거실을 가압 혹은 감압하여 문제가 되는 차압을 어느 정도 상쇄할 수 있다.

  • PDF

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

A Comparative Analysis on Cooling Energy of Heat Recovery Ventilator and Air Handling Unit in the Office Building (사무용 건물에서 전열교환 환기시스템과 일반공조기의 냉방에너지 비교분석에 관한 연구)

  • Jang, Ji-Hoon;Kim, Hyeonsoo;Auh, Jin-Sun;Leigh, Seung-Bok;Kim, Byungseon-Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2016
  • Purpose: In order to save the energy consumption of buildings, buildings have been constructed with high performance insulation or airtightness. However, high performance insulation or air tightness has led to a poor indoor air quality. Therefore, HRV(Heat Recovery Ventilator) has received attention to save the energy consumption and insure a good air quality. Because existing research is almost about the performance of HRV in residential buildings, This study analyzed the effect of HRV on cooling energy consumption in commercial office building. Method: This study was proceeded at commercial office building in In-cheon. In order to evaluate the energy consumption of HRV, this study proposed two methods: estimating energy consumption of the room installed AHU(Air Handling Unit) system; estimating energy consumption of the room installed HRV system. Therefore, comparison of two methods was proceeded to evaluate energy performance of each method. Result: As the result of comparison between rooms installed AHU and HRV, the experiment showed that energy consumption of the room installed HRV system is about 22% less than the room of AHU system. This conclusion is considered because the room installed HRV system have maintained temperature well at set point temperature $26^{\circ}C$.

Ventilation Performance Study on Hydrogen Leakage Characteristics of Container Packaged Water Electrolysis Production System (컨테이너 패키지형 그린수소 수전해 생산 시스템의 수소 누출 특성에 관한 환기 성능 연구)

  • SOOIN KWON;BYUNGSEOK JIN;CHEEWOO LEE;SEONGYONG EOM;GYUNGMIN CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.324-335
    • /
    • 2024
  • The container package type sealed water electrolysis production system installs mechanical balance of plant and electrical balance of plant as an integrated unit to enable independent operation within the package module. The auxiliary equipment required to operate the water electrolysis system must be integrated to reduce the installation area and shorten the installation time. At this time, as leak risk factors are placed in a dense space, when a hydrogen gas leak accident occurs, it can have a mutual influence on other adjacent facilities, so it contains various risk factors. In this study, when a gas leak occurs in a container packaged water electrolysis system, possible sources of leakage in the system according to the KS C IEC 60079-10-1:2015 and KGS GC101 standards were identified, and the leak rate and leak characteristics were calculated. did. The hazardous area and its range were calculated according to ventilation and dilution characteristics. In order to optimize ventilation characteristics, design of experiment was used to analyze the influence to evaluate the adequacy of ventilation, and overseas ventilation standards were analyzed and compared. In addition, the optimal ventilation structure and characteristics of the container packaged water electrolysis system were presented according to the results of the experimental design method.

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.

A Study on the Microstructure Properties of $SnO_2$ Gas Sensors Fabricated by Sol-Gel Method (졸-겔법으로 제작된 $SnO_2$ 가스센서의 미세구조 특성에 관한 연구)

  • Jang, K.U.;Kim, M.H.;Lee, W.J.;Lee, H.S.;Kim, T.W.;Chung, D.H.;Ahn, J.H.;Lee, S.I.;Kim, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.102-105
    • /
    • 2005
  • 가스센서는 응용 분야와 기능 및 종류가 다양하고 최첨단 분야로서 학문적으로는 물리, 화학, 전기, 전자 및 기계 등의 배경을 필요로 하며 산업적으로는 공업 전 분야와 농림, 축산, 사무기기에서 뿐만 아니라 공해 방진용(자동차 연소제어 및 배출가스 제어, 대기오염 감시등), 민생용(조리, 환기, 공조 등), 교통 보안용(음주운전측정 및 음주운전 방지장치 등), 방재용(가스 누설 탐지기, 불완전 연소 방지, 산소 결핍, 화재 등), 의료용(호기, 마취가스의 분석 등) 매우 광범위하며 점점 더 확대되어 가고 있다. 본 연구에서는 검출 가스 종류에 따라 졸-겔법으로 감응막을 최적 설계하고, 최적으로 설계된 감응막을 디핑법으로 코팅처리한 후 최적으로 열처리하여 센서를 제작하였다. 또한, 자체 제작한 가스검출 시스템에 제작된 센서를 장착하여 센서의 가스 검출 특성을 측정하고, 측정 데이터를 이용하여 휴대용 가스 검출 시스템을 설계 제작하였다.

  • PDF

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

A study on university office worker's perception of indoor air quality (Focused on K university) (사무실 근로자들의 실내공기질 인식에 관한 기초 조사 (K대학교를 중심으로))

  • Shin, Eun-Young;Kim, Gwang-Hee
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.3
    • /
    • pp.69-76
    • /
    • 2017
  • Indoor Air Quality(IAQ) affects physical and mental state of person who is residing indoor. Also, it manages daily life condition of Indoor Air in the building. According to the study, office workers spend 23 hours and 12 minutes, about 97% of his/her day indoor. Therefore, Indoor air quality affects not only the health of the person whose staying inside for a long hours but also the productivity and efficiency of work. This study conduct investigations on employees' awareness of indoor air quality of office in university. By doing so, we are able to determine current situation and provide basic data of improvement for derived problems. As a result, most of the respondents were not satisfied with ventilation and moisture which are elements of Indoor Air Quality. These led people to struggle with symptoms of health. Therefore, to improve the indoor air quality of a university office, it is necessary to exchange the air six times an hour according to recommendation of Refrigeration and Air Conditioning Engineers (ASHRAE)in the United States. Also, plan for Ventilation system that consider temperature, humidity and air flow indoor shall be provided for high quality conformability. furthermore, It is necessary to consider the multilateral in factors of generation of revenue through health care savings of workers and improvement of productivity.