• Title/Summary/Keyword: 환경피로평가

Search Result 163, Processing Time 0.023 seconds

High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV (무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측)

  • Lee, Sang-rae;Kim, Jae-hwan;Kim, Jae-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • An experimental study on the welding part of a heat transfer plate that constitutes the lightweight and high efficiency recuperator is presented in this paper. In particular, to find out the service life of the welded part, fatigue characteristics were determined through experiments. Experiments were carried out on two materials (STS347, AL20-25 + nb), which are selected as the material of the recuperator; further, the specimens were manufactured through the methods used for actual fabrication and the standards recommended by ASTM. To evaluate the mechanical properties of the specimens at room and high temperature, MTS-810 was used in a high-temperature furnace. The tensile test was carried out at room and high temperatures for each specimen. The fatigue test was carried out by setting the load ratio corresponding to 50%, 40%, 30%, 20%, and 10% of the tensile strength at the stress ratio of 0.1. Finally, the fatigue life characteristics obtained by the experiment were compared with the stresses owing to the load generated in the operating conditions of the recuperator, and the lifetime of the welds was evaluated to prepare for the operation time required by the UAV.

Evaluation of Vibration Fatigue Life of Shipboard Equipment Made of Aluminum Alloy A356 (주조 알루미늄합금 A356을 사용한 해상구조물의 진동피로수명평가)

  • Cho, Ki-Dae;Kim, Jie-Eok;Yang, Sung-Chul;Jung, Hwa-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1257-1263
    • /
    • 2010
  • The naval structure exposes to environmental vibration of shafted propeller propulsion and engine vibration. The shipboard equipments are developed compliance to MIL-STD-167-1A. For this purpose, vibration fatigue life of shipboard equipment for long lives should be estimate via an analytical approach and vibration test. In this paper, High cycle fatigue strength of cast aluminum alloy A356 using shipboard equipment was evaluated by 14 S-N method. The stress applied on the structure is evaluated by an analytical method(frequency response analysis with sinusoidal input and a fatigue evaluation) to simulate a MIL-STD-167-1A test. The frequency with the maximum equivalent stress is shown by Max. test frequency and the vibration fatigue life of shipboard equipment was estimated by Miner's rule.

Fatigue Test and Evaluation of Landing Gear (착륙장치 피로 시험평가)

  • Lee, Sang-Wook;Lee, Seung-Gyu;Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1181-1187
    • /
    • 2012
  • For the fatigue design of aircraft landing gear, the safe-life approach is applied. Structural defects such as cracks or detrimental deformations should not occur under the fatigue load spectrum depicting the entire lifetime usage of the aircraft. In the design phase, the fatigue life of the landing gear is estimated analytically by adopting the stress-based approach because the fatigue of aircraft landing gear is generally high-cycle fatigue. This utilizes S-N curves that are factored to produce design curves that account for the scatter and surface finish of the material. In the test and evaluation phases, a fatigue test should be conducted for full-scale landing gear to substantiate the fatigue design requirement in the end. In this study, the procedure for the fatigue test and evaluation of aircraft landing gear is presented with real application cases.

Fatigue Characteristic of High Impact Polystyrene(HR-1360) Materials (HIPS(HR-1360) 재료의 피로 특성 평가)

  • Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.763-769
    • /
    • 2010
  • In recent times, there has been considerable interest in HIPS (High Impact Polystyrene) materials for their use in construction of office equipments, home electronics, housing for electronics appliances, packing containers, etc. However, these materials suffer from problems caused by fatigue fracture. Further, their strength is substantially affected by environmental conditions. Therefore, in this study, the effect of temperature was analyzed by performing a tensile test and a fatigue test. It was observed that the yield strength, the ultimate strength, and the fatigue life decreased relatively with an increase in temperature. Further, an S-N curve can be predicted by using the results of the tensile test and a micro-Vickers hardness test.

Simulation platform for living environment to ensure quality life (쾌적한 생활 설계를 위한 주거 및 사무실 시뮬레이터개발)

  • Park, Se-Jin;Kim, Chul-Jung;Kim, Si-Kyung;Mazumder, Mohammad Mynuddin Gani
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.853-860
    • /
    • 2007
  • In this modern era, human beings lead their life in complex environment where there are lots of parameters such as temperature, light, smell, sound, visual stimulus etc. that play important role for quality life. These parameters affect physical and mental behavior of a human being immensely. To ensure quality life the demand for quality products is always associated with human emotion and sensibility. Due to human sensibility and emotion involvement with quality life, the design stages of any kind of product must include some certain features related with emotion and sensibility. The cues for optimizing artificial environment are the physiological responses of human in that environment. The conventional approach of environmental physiology is to measure the relationship between environmental physical parameters and human psychological parameters under artificial conditions. Using that approach we tried to design an artificial environment for our daily lives and activities associated with both physiological and psychological behavior. We developed the technique to present the mock environment and software to measure and evaluate sensibility physiologically or psychologically and a simulator to measure and evaluate sensibility that can be utilized for large scale industrial production and design of environment. Simulator to measure and analyze human sensibility (SMAS) was constructed, which was utilized to estimate human sensibility and to simulate living and office environment.

  • PDF

Method of assessment for allowable size of weld defects (熔接缺陷의 許容限界 評價方法)

  • 강성원
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.10-17
    • /
    • 1991
  • 용접구조물에서 용접이음부가 차지하는 비율은 매우 작은 경우가 많지만 용접이음부에는 각종 초기결함(이들 결함으로부터 진전하는 피로 균열, 환경에 의한 균열등을 포함) 및 용접 초기의 부정형을 비롯해서 형상적 불연속 등에서 유기되는 국부적인 응력, 변형률의 집중, 잔류응력, 구속응력, 용접금속이 갖는 숙명적인 야금적 특성의 불균일, bond부 및 HAZ부에서의 용접열 싸이클에 의한 재질의 국부적 강도저하등 용접부의 강도를 저하시키는 인자들이 복합되기 쉽고, 용접구조물 전체의 내파괴 건전성평가에서 용접부가 파괴 강도는 매우 중요하다. 용접구조물의 설계, 시공의 목적은 소요성능의 확보에 있고 구조물이 사용중에 성능손실이나 불안정 파괴가 발생하지 않도록 하는 것이 주요요건이 될 것이다. 현재의 제강기술수준에서 볼 때 모재의 강 도보다 오히려 용접부의 강도 특히 피로강도 및 파괴 인성을 적절하고 합리적으로 평가하는 것이 매우 중요하다고 해도 과언이 아닐 것이다. 용접부의 강도를 평가하는데 있어서 용접부에 발 생하는 용접결함에 대한 평가는 매우 중요하며 이들 결함에 대한 허용결함한계를 평가하여 보수 여부 및 용접구조물의 신뢰성을 평가 할 필요가 있다.

  • PDF

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

Fatigue Life Evaluation in Frequency Domain of aircraft Equipment Exposed to Random Vibration (무작위 진동에 노출된 항공기 탑재 장비의 주파수영역 피로수명 평가)

  • Jung, Hyun Su;Kim, Ki Seung;Kim, Jun Su;Lee, Seong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.627-638
    • /
    • 2017
  • Expecting fatigue life of mounted radar in aircraft is very important when designing, because the mounted radar in aircraft is exposed to long-term external random vibration. Among the methods of predicting the fatigue life, Fatigue analysis method in frequency domain has continuously been proposed in this field. In this paper, four fatigue analysis methods in frequency domain, which are widely used, have been selected and compared with the results for Specimen fatigue test. As a result, Dirlik and Benascicutti-Tovo methods have been matched better with fatigue analysis in time domain than the method in frequency method through the comparison between the fatigue analysis method in time domain and the method in frequency domain by conducting the specimen fatigue test with strain gage. Based on the results of the specimen fatigue test, We have conducted fatigue analysis of mounted radar in aircraft with Dirlik and Benasciutti-Tovo methods in the finite element model, and confirmed that the required life was satisfying.

Experimental Study on Tensile Fatigue Strength of the High Strength Bolts (고장력볼트의 인장피로강도에 관한 실험적 연구)

  • Han, Jong Wook;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.165-170
    • /
    • 2008
  • New high strength bolts are required due to the development of the high strength steel, the ultra-thick steel plates, and the long-span bridge, though high strength bolts with tensile strength of 1,000 MPa are mainly used in construction site of every country. The high strength bolts are often subjected to a repeated tension-type of loading in which the fatigue failure is a major mode of failure. However, the theoretical and experimental study for the fatigue failure of tension bolt has not been well established in Korea. In this study, we performed a tensile fatigue test of F8T, F10T and F13T, F13T-N high strength bolts under tension. We proposed three fatigue strength specifications by performing 95% survival probability analysis for F8T, F10T, F13T, and F13T-N bolt under the $2{\times}10^6$ cycles of repeated loading. And the fatigue strength for the advanced screw thread shape bolt developed in this study are compared with the previous KS screw thread shape bolt.