• Title/Summary/Keyword: 환경콘크리트

Search Result 1,647, Processing Time 0.025 seconds

Evaluation of the Nonlinearity Parameter in Unbound Material for Asphalt Concrete Pavement using Field-NDT Equipment (현장 도로평가장비를 이용한 입상재료층의 비선형 재료상수 추정에 관한 연구)

  • Seo, Joo Won;Choi, Jun Seong;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.227-234
    • /
    • 2008
  • This study examines which models are more suitable for representing mechanical property of unbound materials to analyze behavior of asphalt pavement structure. Results from FWD (Falling Weight Deflectometer) test were used to apply to nonlinear elastic model. The new method which can deduct material constants of nonlinear elastic model is suggested from FWD test data rather than laboratory resilient modulus ($M_R$) test. It is confirmed that the material constants are within the common range in subbase. Test output from FWD and MDD (Multi-Depth Deflectometer) was used to verify reliability of the model. From the results of verification, this study shows that a non-linear elastic model agrees to MDD test data more than a linear elastic model does.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.

Applicability of UAV in Urban Thermal Environment Analysis (도시 내 열환경 분석에서 무인항공기의 활용가능성)

  • Kang, Da-In;Moon, Ho-Gyeong;Sung, Sun-Yong;Cha, Jae-Gyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.52-61
    • /
    • 2018
  • Urban heat islands occur due to increases in the extent of artificial surfaces such as concrete, asphalt and high-rise buildings. In this regard, research into the use of satellite thermal infrared images for thermal environment analysis of urban areas is being carried out. However, such analysis of the characteristics of individual land cover with low-resolution satellite images suffers from limitations because land cover patterns in urban areas are complicated. Recently, UAV has been widely used, which can compensate for this limitation as it is able to acquire high-resolution images. In this paper, the accuracy of UAV infrared images is verified and the applicability of UAV in urban thermal environment analysis is examined by comparing the results with land surface temperatures from Landsat 8 thermal images. The results show a high positive correlation of temperature values at 0.95, and no statistically significant difference between the two groups. Comparisons of land surface temperature according to land cover showed that the largest difference observed was $4.63^{\circ}C$ in the Used area, and UAV images with small cell units reflected various surface temperatures. Furthermore, it was possible to analyze the surface temperatures of various green spaces such as wetlands and street tree areas, which can lower surface temperatures in urban areas, with street tree shadows reducing surface temperatures by about $4-6^{\circ}C$. UAV can easily and rapidly measure the surface temperature of urban areas and is able to analyze various types of green spaces. Thus, this is an effective tool for thermal environment analysis in urban areas to aid in the design or management of urban green spaces, as it can allow for land cover and the effects of the various green spaces.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.

A Study on the Economic Estimation of the Recycling of Construction Waste (건설폐기물(建設廢棄物) 재활용(再活用) 과정에 대한 경제성(經濟性) 평가(評價) 연구(硏究))

  • Park, Won-Woo;Lee, Sang-Duck;Min, Bo-Ra;Park, Lee-Ran;Gim, Ui-Gyeong;Baek, Mi-Hwa;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Amount of waste is always generated in industrialization process and it is gradually increasing. Domestic and industrial waste in 2003 increased by 9.5 percent than that of the last year(2002), whereas the amount of construction waste increased largely by 21 percent. Recently construction waste of total waste accounts for nearly 50 percent, waste concrete and Ascon from the construction waste takes up to 73 percent. Furthermore, amount of natural materials are gradually decreasing, that is, they are not sufficient any more. Owing to these reasons, the importance of recycling construction waste has been emphasized. The use of recycling aggregate makes the disposal of construction waste easier as well as protects environment from gathering raw aggregate. Also, it has the alternative effect economizing the insufficient new natural aggregate. This study employs the cost-benefit model to analyze the economic effect of construction waste recycling of Ascon which takes relatively high part of the total waste. The cost-comparison between raw aggregate and recycling aggregate were analyzed. With the model, the economic effect of Ascon recycling in 2003 and 2004 in capital area of Korea were analysed. Cost comparison between raw aggregate and recycling aggregate were also carried out. The result showed that the economic effect of Ascon recycling increased to 0.0808 for 2004 as compared 0.0694 for 2003. We could not conclude using above data, but this result shows that the economic benefit of Ascon recycling of construction waste has increased.

Rootzone Profile, Trickle Irrigation System and Turfgrass Species for Roof Turf Garden (옥상녹화에 적합한 지반, 점적 관수 및 잔디 선정)

  • 이재필;한인송;주영규;윤원종;정종일;장진혁;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • This study was conducted to find out suitable rootzone profile, irrigation system, and turfgrass species for roof turf garden. Treatments of profile with soil amendment were Mixture I: Perlite(PL)60%+Vermiculite(VC)20%+Peatmoss(PM)20%, Mixture II: PL60%+VC 10%+PM20%+Sand(SD)10%, Mixture III: PL60%+VC20%+PM20% and Mixture IV: PL60%+VC10%+PM20%+SD10%+Styrofoam 5cm as a drain layer. To test trickle irrigation for roof garden, intervals of main pipe spacing(50cm, 100cm) and drop hole distance(15, 20, 30, 50 and 100cm)were treated, To select most suitable turfgrass species or mixture, Bermudagrass 'Konwoo', Zoysiagrass 'Konhee' and cool-season grass(Kentucky Bluegrass 80% + Perennial Ryegrass 20%, Tall Fescue 30% + KB50% + PR 20%)were tested. In particle size analysis, the soil amendments Perlite and vermiculite showed very even distribution, however, peatmoss contained mostly coarse particles with fiber over $\Phi$ 4.75mm. Under field moisture condition, vermiculite and peatmoss showed 350% water holding capacity, on the other hand, sand or Perlite showed 115% and 166%, respectively. Total weight of soil profile was 139.2kg/$m^2$ with Styrofoam drain layer without sand, which showed most lightest among treatments. Turf quality also resulted positve with Styrofoam drain layer installation. On trickle irrigation system, the proper interval of main drain pipe spacing and drop hole distance were 50cm and 50cm, respectively, In irrigation frequency, once per a day for 15 minute irrigation with 2 1/hr showed the best results on turf quality. Among turfgrass species or cool season grass mixture, warm season turfgrass fine leaf type zoysiagrass 'Konhee' and Bermudagrass 'Konwoo' showed very acceptable result on all over the treatments of rootzone and irrigation system. To apply cool season grasses for the roof garden, advanced researches may be needed to establish the proper soil amendment, rootzone profile, and irrigation system, Application of Bermudagrass 'Konwoo' for roof turf garden also needs successive tests to overcome winter injuries.