• Title/Summary/Keyword: 환경콘크리트

Search Result 1,647, Processing Time 0.026 seconds

The Characteristic of Physical properties and Shrinkage of Nano-filament according to the Textured Conditions (사가공 조건에 따른 nano-filament의 물성 및 수축특성)

  • Kang, Ji-Man;Cho, Dae-Hyun;Lee, Jun-Hee;Choi, Jong-Duk
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.92-92
    • /
    • 2012
  • 나노필라멘트 섬유는 직편물 등으로 구조/용도 다양화 가능하다. 나노필라멘트 섬유는 소재특유의 닦음성, 흡착성, 고밀도 특성 등을 활용하여 직편물의 형태로 다양한 용도 개발이 가능하며, 나노기술을 접목시킨 새로운 기능성과 고성능 섬유 소재 개발을 통한 자동차 분야의 개발 트랜드인 고급화, 경량화, 고성능화 추진을 위해 연료전지, 신슐레이터, 고성능 필터, 시트나 도어트림, 헤드라인과 같은 인테리어류와 전자 분야의 제조원가 절감, 공정 단순화를 위해 프린터 토너, 하드디스크 연마제, 다용도 No Dust Cleaner 등의 개발, 의료/바이오 분야의 혈액필터, 수술용 보호제, 창상억제제(유착 방지막), 항균마스크, 의료용 약물전달 시스템 및 환경 분야의 정수/공기 정화 시스템, 건축 토목용 보강제, 고(高)인성 콘크리트, 폐수처리용 슬러리 담체(Matrix) 등 다양한 분야로 용도 개발이 가능하다. 본 연구는 나노필라멘트의 다양한 분야로의 용도 개발 적용의 기초연구로서, 부직포 상으로 얻어지는 나노섬유 제조기술의 단점인 직경의 불균일, 물리적 특성의 한계와 필라멘트가 아닌 단섬유로 인해 발생하는 용도 및 상품 개발에의 제한성을 개선하기 위하여 연속적으로 필라멘트를 생산가능한 해도형 복합방사 방법을 도입하여 개발한 장섬유 필라멘트 형태의 해도형 나노 섬유 소재를 활용하는 것으로 방사된 SDY 형태의 나노필라멘트 섬유를 제직상에서의 작업성 용이 및 직물의 벌키성 증대와 Crimp성을 향상 시켜 터치감 및 후가공에 용이할 수 있도록 DTY를 제조함에 있어 기존 일반 POY사에서의 DTY공정과는 달리 소재의 특성 즉, 해도사의 해성분 및 도성분의 후공정을 감안하여 최적의 Crimp는 발현하되 단면의 형상을 유지할 수 있는 다양한 사가공 조건을 설정 하고 이에 따라 가공사를 생산하여 공정조건에 따른 가공사의 물성 및 수축특성을 비교 분석 하여 염색 및 후가공시 소재의 물성 및 수축특성이 미치는 영향성을 살펴보고자 하였다.

  • PDF

Thermal Environment Characteristics of Permeable Cement Concrete Pavement( I ) ($\cdot$보수성 시멘트 콘크리트 포장의 열환경 특성( I ))

  • Ryu Nam-Hyong;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.82-94
    • /
    • 2005
  • This study was undertaken to measure and analyze the thermal environment characteristics of the grey permeable cement concrete pavement(GPCCP), the permeable cement concrete brick pavement(PCCBP) compared with impermeable cement concrete pavement(ICCP) and bare soil(BS) under the summer outdoor environment. Following is a summary of major results. 1) The peak surface temperature was greatest in the GPCCP$(54.2^{\circ}C)$ followed by ICCP$(47.2^{\circ}C)$ rut August 2, 2002, the hottest day$(35.3^{\circ}C\;of\;highest\;temperature)$ during the experiment; peak temperature in the ICCP and BS were $45.5^{\circ}C)$ and $45.3^{\circ}C)$ respectively. 2) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the ICCP and that this was mainly due to a low albedo in the former(0.2) relative to that of the latter(0.4). 3) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the PCCBP, BS and that this was mainly due to a decreased latent heat resulting from a time dependent decreasing impact of rainfall. 4) It is necessary to make cool pavements to further studies on light-colored surface materials for attaining high albdo and construction methods which can enhance the latent heat through the continuous evaporation from pavements surface. 5) Vertical arrangement of pavement layers has not been considered in the present study, which has been focuses on the heat characteristics of the surface layer materials. Accordingly, future studies will have to be empasized on pavement methods including the vertical arrangement of the pavement layers.

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Evaluation on the Sulfate Attack Resistance of Cement Mortars with Different Exposure Conditions (노출조건에 따른 시멘트 모르타르의 황산염침식 저항성 평가)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.427-435
    • /
    • 2012
  • In order to evaluate the effects of exposure conditions on the resistance to sulfate attack of normal and blended cement mortars, several mechanical characteristics of the mortars such as expansion, strength and bulk density were regularly monitored for 52 cycles under sodium sulfate attack. The mortar specimens were exposed to 3 different types of exposure conditions; 1) continuous full immersion(Exposure A), continuous half-immersion(Exposure B) and cyclic wetting-drying(Exposure C). Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens subjected to Exposure B, showing the wide cracks in the portions where attacking solution is adjacent to air. Additionally, the beneficial effect of ground granulated blast-furnace slag and silica fume was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability and densified structure. Thus, it is suggested that when concrete made with normal cement is exposed to sulfate environment, proper considerations on the exposure conditions should be taken.

A Case Study on Blasting Demolition Method of Structure (구조물 발파해체 공법 시공사례 연구)

  • 한동훈;안명석;공병승;이윤재;류창하
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.49-60
    • /
    • 2003
  • Nowadays it is tendency to make a remodelling or demolition of old structures with the rapid development of blasting technique. In this treatise it is arranged of improvement procedure of blasting demolition method in korea which was begun since August 1991. Recently, the blasting demolition method has much merits with 60-70% reduction effect of construction period than mechanical demolition method. and so that it has much economical points specially over than 5 storied high buildings. In order to maximalize economical effects of the blasting demolition method, environment safety and recycling, it must be needed. at first to develop the estimating programs against vibration, noise, flying stones, and dust. Also it is required to take a responsibility for using recycling materials after blasting demolition of old structures, and to be invested to advance the blasting demolition techniques.

Degree of Restraint(DOR) of Longitudinal Steel at Continuously Reinforced Concrete Pavement(CRCP) Against Environmental Loadings (환경하중에 의한 연속철근콘크리트(CRCP) 종방향 철근의 구속정도)

  • Nam, Jeong-Hee;Ahn, Sang Hyeok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.95-104
    • /
    • 2014
  • PURPOSES : The purpose of this study is to evaluate the degree of restraint (DOR) of longitudinal steel at continuously reinforced concrete pavement (CRCP) against environmental loadings. METHODS : To measure the longitudinal steel strain, 3-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10 min. intervals during 259 days. In order to properly analyze the steel strains first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into 12 phases with different events such as before paving, during concrete hardening, and after first cracking, etc. RESULTS : Thermal strain rate (TSR) concept is defined as the linear strain variations with temperature changes and restraints rate of longitudinal steel against environmental loadings (especially thermal loading) with different cases is defined as degree of restraint(DOR). New concept of DOR could be indirect indicator of crack width behaviors of CRCP. CONCLUSIONS : Before paving, DOR of longitudinal steel is almost same at the coefficient of thermal expansion of steel ($12.44m/m/^{\circ}C$) because of no restraint boundary condition. After concrete pouring, DOR is gradually changed into -1 due to concrete stiffness developing with hydration. After first cracking at crack induced area, values of DOR are around -3~-5. The negative DOR stands for the crack width behavior instead of steel strain behavior. During winter season, DOR reached to -5.77 as the highest, but spring this values gradually reduced as -1.7 as the lowest. Based on this observation, we can presume crack width decreased over time within the time frame of this study. This finding is not consistent with the current theory on crack width variations over time, so further study is necessary to identify the causes of crack width reducing. One of the reasons could be related to concrete stress re-distribution and stress relaxation.

Compression Behavior of Manufacturability Enhanced FRP-Concrete Hybrid Composite Pile (제작성을 개선한 하이브리드 FRP-콘크리트 합성말뚝의 압축거동)

  • Lee, Young-Geun;Park, Joon-Seok;Kim, Sun-Hee;Kim, Hong-Lak;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.66-71
    • /
    • 2013
  • As a fundamental structural element of construction, a pile is constructed to transfer loads from superstructure to foundation. In general, since the pile foundation is constructed in the ground or ground under water, it is difficult to protect from the damages due to moisture and/or salt which create corrosive environment and it is even more difficult to estimate its durability. In this study, in order to enhance the durability and constructibility of the pile foundation, FRP-concrete hybrid composite pile (HCFFT) is suggested. Moreover, equation for the prediction of load carrying capacity of HCFFT circular members under compression is suggested and discussed based on the results of analytical and experimental investigations. In addition, we also conducted the finite element simulation for the structural behavior of new HCFFT composite pile and the result is compared with those of experimental and analytical studies. In addition, the axial loading capacity of new HCFFT composite pile is compared with those of existing PHC pile and hollow circular steel pipe pile, and it was found that the new HCFFT composite pile has advantages over conventional PHC and steel pipe piles.

Development of high performance shotcrete for permanent shotcrete tunnel linings (Application of high-early strength cement with alkali-free accelerator in spring water condition) (영구 숏크리트 터널 라이닝 구축을 위한 고성능 숏크리트 개발 (용수부에서의 조강시멘트와 alkali-free급결제 적용 검토))

  • Park, Hae Geun;Lee, Myeong Sub;Kim, Jea Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • Since the mid of 1990, permanent shotcrete tunnel linings such as Single-shell and NMT have been constructed in many countries for reducing the construction time and lowing construction costs instead of conventional in-situ concrete linings. Among essential technologies for successful application of permanent shotcrete linings, high performance shotcrete having high strength, high durability and better pumpability has to be developed in advance as an integral component. This paper presents the idea and first experimental attempts to increase early strength and bond strength of wet-mixed Steel Fiber Reinforced Shotcrete (SFRS) in spring water condition. In order to increase early behavior of SFRS, a new approach using high-early strength cement with alkali-free liquid accelerator has been investigated. From the test results, wet-mix SFRS with high-early strength cement and alkali-free accelerator exhibited excellent early compressive strength improvement compared to the ordinary portland cement and good bond strength even under spring water condition.

  • PDF