• Title/Summary/Keyword: 환경적인 장애물

Search Result 379, Processing Time 0.023 seconds

The Ecological Health Screening Assessment of Agricultural area using Biomarkers and Bioindicators in Misgurnus Anguillicaudatus (case study) (미꾸리의 생물지표를 이용한 농업지역의 수생태계 건강성 스크리닝 평가(사례연구))

  • Kim, Ja-Hyun;Han, Sun-Young;Yeom, Dong-Hyuk
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • This study evaluated the screening level assessment of ecological health using four biomarkers and four bioindicators of Misgurnus anguillicaudatus as a indicator species in agricultural area of South Korea during May-June 2011. The endocrine disrupting chemical (EDC) indicators, such as vitellogenin (VTG) and gonado-somatic index (GSI), were not significantly changed in the agricultural site (p>0.05), indicating no effects. The biomarkers and bioindicators were compared between two sites of reference site (RS) and the agricultural site (AS) for screening assessment of ecological health. The ethoxyresorufin-O-deethylase (EROD) activity, acetylcholinesterase (AChE) activity, and DNA damage were significantly changed in the AS compared with the RS (p<0.05). But the individual level bioindicators such as condition factor (CF), hepato-somatic index (HSI), and gonado-somatic index (GSI) were not significantly different from reference site (RS). These results may indicate impairments of ecological health by toxic chemicals and environmental conditions. Current this study is based on screening assessment of biochemical and individual level biomarkers and bioindicators, so further study is required additional biomarkers and population or community level bioindicators for more specific health assessments in agricultural areas.

A Simple Methodology for Estimating the Capacity of Multi-lane Smart Tolling (다차로 톨링시스템(SMART Tolling)의 용량추정 방법에 대한 연구)

  • Choi, Keechoo;Lee, Jungwoo;Park, Sangwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.305-311
    • /
    • 2012
  • With the rapid deployment of hipass$^{(R)}$, the congestion is inevitable due to the operation of the hipass lane system. Recently, SMART Highway project have developed a multi-lane mainline tolling system, called SMART Tolling system. To analyze the effectiveness of the system in terms of capacity, this study tries to estimate the capacity and its improvement of multi-lane tolling system based on current hipass$^{(R)}$ data. The methodology uses the saturation time headway. This follows three steps; 1) estimate the saturation time headway, using hipass$^{(R)}$ data, and capacity. 2) estimate two factors (the first one is dividing the one side lane width and lateral clearance factor ($f_w$) into two side one, the second one is dividing the capacity of hipass lane operating a circuit breaker into the capacity of hipass lane not operating, the last one is increasing factor of lane width). 3) calculate the capacity of multi-lane mainline tolling system. The results of method produced 2172~2187 veh/hour as smart tolling capacities, respectively. Those are higher about 370 veh/hour than the values from existing literature reviews. Additionally, saturation time headways were identified as lower by 0.5 seconds/veh than existing headways based on hi-pass$^{(R)}$ based one, which naturally implies the improvement in capacity. Some limitations and future research agenda have also been discussed.

Gnawing and Escaping Behaviors of Monochamus alternatus (Coleoptera: Cerambycidae) in a Confined Environment: Suggesting a Bioassay Method of Netting for Adult Escape Prevention (인위적 구속환경에서 솔수염하늘소의 쏠기와 탈출행동: 성충탈출 방지용 그물망의 생물검정법 제안)

  • Ko, Gyeong hun;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • The Japanese pine sawyer, Monochamus alternatus Hope, is a representative vector of the pine wood nematode, Bursaphelenchus xylophilus, which causes wilting symptoms in pine trees. A control method using a net has been introduced, which is an alternative method to the fumigation for the control of dead pine trees by pine wilt disease. This study was carried out to investigate the factors that induce gnawing and escaping behaviors of M. alternatus. The behaviors were examined after M. alternatus adult was placed in a confined space at different temperatures. M. alternatus adults could escape through mesh net torn by gnawing when they were confined in a space of 30 mm or less in diameter. The success rate of escape was high at 20 to $30^{\circ}C$, and no adults escaped at $15^{\circ}C$. The enticement of M. alternatus adults by food didn't affect the success rate of escape. In the case of not being confined in a narrow space, the escaping hole could not be formed because the gnawing was not concentrated on one part. M. alternatus moved its body in a narrow space using the tarsus of middle and hind legs, and made an escape hole by concentrically gnawing the obstacle on the front side with mandible, and showed a behavior of getting out while supporting the body by supporting the front legs. The present results will be able to use as an important basic information for evaluating the performance of mesh net which confines M. alternatus adults and suggested by alternative method to fumigation technology.

Interactive Motion Retargeting for Humanoid in Constrained Environment (제한된 환경 속에서 휴머노이드를 위한 인터랙티브 모션 리타겟팅)

  • Nam, Ha Jong;Lee, Ji Hye;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we introduce a technique to retarget human motion data to the humanoid body in a constrained environment. We assume that the given motion data includes detailed interactions such as holding the object by hand or avoiding obstacles. In addition, we assume that the humanoid joint structure is different from the human joint structure, and the shape of the surrounding environment is different from that at the time of the original motion. Under such a condition, it is also difficult to preserve the context of the interaction shown in the original motion data, if the retargeting technique that considers only the change of the body shape. Our approach is to separate the problem into two smaller problems and solve them independently. One is to retarget motion data to a new skeleton, and the other is to preserve the context of interactions. We first retarget the given human motion data to the target humanoid body ignoring the interaction with the environment. Then, we precisely deform the shape of the environmental model to match with the humanoid motion so that the original interaction is reproduced. Finally, we set spatial constraints between the humanoid body and the environmental model, and restore the environmental model to the original shape. To demonstrate the usefulness of our method, we conducted an experiment by using the Boston Dynamic's Atlas robot. We expected that out method can help the humanoid motion tracking problem in the future.

The study on enhanced micro climate of the oyster mushroom cultivation house with multi-layered shelves by using CFD analysis (CFD 분석에 의한 느타리버섯 재배사 환경균일성 향상 연구)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Lim, Yeong-Taek
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • The oyster mushroom cultivation house typically has multiple layers of growing shelves that cause the disturbance of air circulation inside the mushroom house. Due to this instability in the internal environment, growth distinction occurs according to the area of the growing shelves. It is known that minimal air circulation around the mushroom cap facilitates the metabolism of mushrooms and improves their quality. For the purpose of this study, a CFD analysis FLUENT R16 has been carried out to improve the internal environment uniformity of the oyster mushroom cultivation house. It is found that installing a section of the working passage towards the ceiling is to maintain the internal environment uniformity of the oyster mushroom cultivation house. When all the environment control equipment - including a unit cooler, an inlet fan, an outlet fan, an air circulation fan, and a humidifier - were operated simultaneously, the reported Root Mean Square (RMS) valuation the growing shelves were as follows: velocity 23.86%, temperature 6.08%, and humidity 2.72%. However, when only a unit cooler and an air circulation fan operated, improved RMS values on the growing shelves were reported as follows: velocity 23.54%, temperature 0.51%, and humidity 0.41%. Therefore, in order to maintain the internal environment uniformity of the mushroom cultivation house, it is essential to reduce the overall operating time of the inlet fan, outlet fan, and humidifier, while simultaneously appropriately manage the internal environment by using a unit cooler and an air circulation fan.

A RSS-Based Localization for Multiple Modes using Bayesian Compressive Sensing with Path-Loss Estimation (전력 손실 지수 추정 기법과 베이지안 압축 센싱을 이용하는 수신신호 세기 기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In Wireless Sensor Network(WSN)s, the detection of precise location of each node is essential for utilizing sensing data acquired from sensor nodes effectively. Among various location methods, the received signal strength(RSS) based localization scheme is mostly preferable in many applications because it can be easily implemented without any additional hardware cost. Since a RSS-based localization scheme is mainly affected by radio channel or obstacles such as building and mountain between two nodes, the localization error can be inevitable. To enhance the accuracy of localization in RSS-based localization scheme, a number of RSS measurements are needed, which results in the energy consumption. In this paper, a RSS based localization using Bayesian Compressive Sensing(BSS) with path-loss exponent estimation is proposed to improve the accuracy of localization in the energy-efficient way. In the propose scheme, we can increase the adaptative, reliability and accuracy of localization by estimating the path-loss exponents between nodes, and further we can enhance the energy efficiency by the compressive sensing. Through the simulation, it is shown that the proposed scheme can enhance the location accuracy of multiple unknown nodes with fewer RSS measurements and is robust against the channel variation.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Intelligent Railway Detection Algorithm Fusing Image Processing and Deep Learning for the Prevent of Unusual Events (철도 궤도의 이상상황 예방을 위한 영상처리와 딥러닝을 융합한 지능형 철도 레일 탐지 알고리즘)

  • Jung, Ju-ho;Kim, Da-hyeon;Kim, Chul-su;Oh, Ryum-duck;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2020
  • With the advent of high-speed railways, railways are one of the most frequently used means of transportation at home and abroad. In addition, in terms of environment, carbon dioxide emissions are lower and energy efficiency is higher than other transportation. As the interest in railways increases, the issue related to railway safety is one of the important concerns. Among them, visual abnormalities occur when various obstacles such as animals and people suddenly appear in front of the railroad. To prevent these accidents, detecting rail tracks is one of the areas that must basically be detected. Images can be collected through cameras installed on railways, and the method of detecting railway rails has a traditional method and a method using deep learning algorithm. The traditional method is difficult to detect accurately due to the various noise around the rail, and using the deep learning algorithm, it can detect accurately, and it combines the two algorithms to detect the exact rail. The proposed algorithm determines the accuracy of railway rail detection based on the data collected.

Intelligent mobile Robot with RSSI based Indoor Location Estimation function (RSSI기반 위치인식기능 지능형 실내 자율 이동로봇)

  • Yoon, Ba-Da;Shin, Jae-Wook;Kim, Seong-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.449-452
    • /
    • 2007
  • An intelligent robot with RSSI based indoor location estimation function was designed and implemented. A wireless sensor node was attached to the robot to received the location data from the indoor location estimation function. Spartan III was used as the main control device in the mobile robot. The current location data collected from the indoor location estimation system was transferred to the mobile robot and server through Zigbee/IEEE 802.15.4 wireless communication of the sensor node. Once the location data is received, the sensor node senses the direction of the robot head and directs the robot to move to its destination. Indoor location estimation intelligent robot is able to move efficiently and actively to the user appointed location by implementing the proposed obstacles avoidance algorithm. This system is able to monitor real-time environmental data and location of the robot using PC program. Indoor location estimation intelligent robot also can be controlled by executing the instructions sent from the PC program.

  • PDF