• Title/Summary/Keyword: 환경유전자

Search Result 1,156, Processing Time 0.036 seconds

Functional Mechanism of Calmodulin for Cellular Responses in Plants (식물의 세포반응에 대한 칼모듈린의 functional 작용기작 연구)

  • Cho, Eun-Kyung;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2009
  • Calcium ($Ca^{2+}$) plays pivotal roles as an intracellular second messenger in response to a variety of stimuli, including light, abiotic. and biotic stresses and hormones. $Ca^{2+}$ sensor is $Ca^{2+}$-binding protein known to function in transducing signals by activating specific targets and pathways. Among $Ca^{2+}$-binding proteins, calmodulin (CaM) has been well reported to regulate the activity of down-stream target proteins in plants and animals. Especially plants possess multiple CaM genes and many CaM target proteins, including unique protein kinases and transcription factors. Thus, plants are possible to perceive different signals from their surroundings and adapt to the changing environment. However, the function of most of CaM or CaM-related proteins have been remained uncharacterized and unknown. Hence, a better understanding of the function of these proteins will help in deciphering their roles in plant growth, development and response to environmental stimuli. This review focuses on $Ca^{2+}$-CaM messenger system, CaM-associated proteins and their role in responses to external stimuli of both abiotic and biotic stresses in plants.

Quorum Quenching Enzymes and Biofouling Control (정족수 제어효소와 biofouling 제어)

  • Jeon, Young Jae;Jeong, Won-Geom;Heo, Hye-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1487-1497
    • /
    • 2016
  • Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.

Phylogenetic characterization of bacterial populations in different layers of oak forest soil (상수리나무림의 토양 층위별 세균군집의 계통학적 특성)

  • Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • We have examined the correlation between the physicochemical and microbiological environment variables for the different layers of oak forest soil in Mt. Gyeryong, Korea. The result shows that there is a high correlation in the environment variables between the soil parameters of the fermented (F) layer and humus (H) layer. In particular, the pH level in the F layer shows a high correlation with C and N, while the various organic acids of the H layer turns out to be closely correlated with soil bacteria density. As we evaluated phylogenetic characteristics of bacterial populations by DGGE analysis with DNA extracted. Total of 175 bands including 43 bands from litter (L) layer, 42 bands from F layer, 43 bands from H layer and 47 bands from rhizosphere (A) layer were selected as the major DGGE band of oak forest soil. Based on the 16S rRNA gene sequences, 175 DGGE bands were classified into 32 orders in 7 phylum. The heat map was analyzed in order to compare the quantity of the base sequences of each order and based on the clustering of the different layers of oak forest soil, the result confirms that the F layer and H layer belong to a different cluster from that of L layer and A layer. Furthermore, it also showed that approximately 50% of the total microbial population in different layers is ${\alpha}$-proteobacteria, which indicates that they belong to the dominant system group. In particular, Rhizobiales, Burkholderiales and Actinobacteriales were observed in all the seasons and layers of oak forest soil, which confirms that they are the indigenous soil bacterial community in oak forest soil.

Acute Oral Toxicity of dsRNA to Honey Bee, Apis mellifera (꿀벌에 대한 dsRNA의 급성섭식독성 평가)

  • Lim, Hye Song;Jung, Young Jun;Kim, Il Ryong;Kim, Jin;Ryu, Sungmin;Kim, Banni;Lee, Jung Ro;Choi, Wonkyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • BACKGROUND: RNA interference (RNAi) eliminates or decreases gene expression by disrupting the target mRNA or by interfering with translation. Recently, RNAi technique was applied to generate new crop traits which provide protection against pests. To establish the environmental risk assessment protocol of RNAi LMO in lab scale, we developed dsRNA expression system using E. coli and tested acute oral toxicity assay to honey. METHOD AND RESULTS: The dsRNA expression vector, L4440, was chosen and cloned 240 bp of Snf7 and GFP gene fragment. To develop the maximum dsRNA induction condition in E. coli, we tested induction time, temperature and IPTG concentration in media. To estimate the risk assessment of dsRNA to honey bee, it has been selected and cultured with dsRNA supplement for 48 hours according to OECD guideline. As a result, the optimum condition of dsRNA induction was $37^{\circ}C$, 4 hours and 0.4 mM IPTG concentration and the difference between Snf7 and GFP dsRNA molecules from E. coli was not significant in survival and behavior to honey bee. Furthermore, blast search results indicated that effective match of predicted dsRNA fragments were not existed in honey bee genome. CONCLUSION: In this study, we developed and tested the acute oral toxicity of dsRNA using E. coli expression system to honey bee.

The Infection of Heterosporis anguillarum in Cultured Shortfin Eel (Anguilla bicolor pacifica) (양식동남아산 뱀장어(Anguilla bicolor pacifica)의 Heterosporis anguillarum 감염)

  • Kim, Jin-Do;Do, Jeong-Wan;Choi, Hye-Sung;Jo, Hyae-In;Lee, Nam-Sil;Kim, Young-Dae
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.382-388
    • /
    • 2014
  • Shortfin eel (Anguilla bicolor pacifica) is a species of commercial importance and its production is greatly affected due to the infection by Heterosporis anguillarum. In this study, we evaluated the effect of H. anguillarum infection on the growth of Shortfin eel. A disease that trunk muscle of cultured shortfin eel, Anguilla bicolor pacifica, were irregular and resulted in death, breakout of the commercial eel culture farm. We observed that the trunk muscle of infected eels were irregular and represented white or yellowish externally. Histopathologically, a great numbers of large or small spores and sporophorocysts were also observed in degenerated muscle layer. The cloning of specific gene of H. anguillarum, encoding small subunit ribosomal RNA (SSU-rRNA) was amplified by the polymerase chain reaction(PCR) from the muscle lesion of diseased eel. The size of clone gene is well matched with the size of small subunit ribosomal RNA of H. anguillarum and thus confirming the infection by H. anguillarum.

Analyzing Vomit of Platalea minor (Black-faced Spoonbill) to Identify Food Components using Next-Generation Sequencing and Microscopy (차세대염기서열 및 현미경 분석을 통한 저어새의 토사물 내 먹이생물 분석)

  • Kim, Hyun-Jung;Lee, Taek-Kyun;Jung, Seung Won;Kwon, In-Ki;Yoo, Jae-Won
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • We sampled vomit of black-faced spoonbills(Platalea minor) during the brood-rearing season (from June 2011 to June 2014) at the Namdong reservoir in Incheon and analyzed the food components in the vomit using microscopy and next-generation sequencing (NGS). Microscopic observations primarily helped in identifying osteichthyes (bony fishes), crustaceans, and polychaetes. In particular, species belonging to the families Mugilidae and Gobiidae among the fish, and Macrophthalmus japonicas among the crustaceans, were observed at high frequency. Results of NGS analysis revealed the predominant presence of bony fish (42.58% of total reads) and crustaceans (40.75% of total reads), whereas others, such as polychaetes (12.66%), insects (0.24%), and unidentified species (3.78%), occurred in lower proportions. At the species level, results of NGS analysis revealed that Macrophthalmus abbreviates and Macrobrachium sp. among the crustaceans, and Acanthogobius hasta, Tridentiger obscurus, and Pterogobius zacalles among the bony fish, made up a high proportion of the total reads. These food species are frequently found at tidal flats in the Songdo and Sihwa lakes, emphasizing the importance of these areas as potential feeding sites of the black-faced spoonbill. Feed composition of the black-faced spoonbill, as evaluated by analyzing its vomit, differed when the evaluations were done by microscopic observation or by NGS analysis. Evaluation by microscopic observation is difficult and not error free, owing to the degradation of the samples to be analyzed; however, NGS analysis is more accurate, because it makes use of genetic information. Therefore, accurately analyzing food components from morphologically indistinguishable samples is possible by using genetic analysis.

Physiological Characterization of BTEX Degrading Bacteria Microbacterium sp. EMB-1 and Rhodococ-cus sp. EMB-2 Isolated from Reed Rhizosphere of Sunchon Bay (순천만 갈대의 근권으로부터 분리한 BTEX 분해세균 Microbacterium sp. EMB-1과 Rhodococcus sp. EMB-2의 생리학적 특성 분석)

  • Kang Sung-Mi;Oh Kye-Heon;Kahng Hyung-Yeel
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study focuses on investigating roles of microorganisms in decontamination of reed rhizosphere in Sunchon Bay, Korea, which is considered one of the marsh and mud environment severely affected by human activities such as agriculture and fisheries. In general, the bay is known to play the role of the buffering zone to reduce the sudden impact or change by environmental stresses. In our initial efforts to elucidate the microbial functions in decontamination process in reed rhizosphere, pure bacteria capable of degrading aromatic hydrocarbons were isolated from reed (Phragmites communis) rhizosphere of Sunchon bay by enrichment culture using either benzene, toluene, ethylbenzene, or xylene (BTEX) as a sole source of carbon and energy. Measurement of the rates of BTEX degradation and cell growth during the incubation in BTEX media under several temperature conditions demonstrated maximized degradation of BTEX at $37^{\circ}C$ in both strains. Both strains were also resistant to all the heavy metals and antibiotics tested in this study, as well as they grew well at $42^{\circ}C$. Identification of the isolates based on 16S rRNA gene sequences, and a variety of phenotypic and morphologic properties revealed that the two strains capable of BTEX catabolism were among Microbacterium sp., and Rhodococcus sp. with over $95{\%}$ confidence, designated Microbacterium sp. EMB-1 and Rhodococcus sp. EMB-2, respectively This result suggested that in the rhizosphere of reed, one of major salt marsh plants they might play an important roles in decontamination process of reed rhizosphere contaminated with petroleum such as BTEX.

Effect of Photoperiod on Radiation-Induced Pink Mutations in Tradescantia Stamen Hairs (자주달개비 수술털에서 방사선에 의해 유발되는 분홍돌연변이에 대한 광주기의 영향)

  • 김원록;김진규
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The present study was carried out to investigate the combined effect of radiation and photoperiod (PP) regimes on Tradescantia 4430 somatic cell mutations. Potted plants were irradiated with 0.3, 0.5 and 1.0 Gy of gamma radiation from 60Co source. The plants irradiated only with gamma radiation were used as control group (CT). The somatic cell mutation rate in 0.5 Gy irradiated CT and PP20 group started to increase on the 6th day and reached a maximum value on the l0th day and 9th day after irradiation while the rate in the experimental group under 4 hours of photoperiod a day (PP4) started to increase on the l0th day and reached a maximal value on the 16th day post-irradiation. The slope of dose-response curve in CT was 5.99 ($r^2$=0.99), while it was 6.93 ($r^2$=0.98) in PP20 and 11.74 ($r^2$=0.99) in PP4, respectively. The biological efficacy of radiation in the induction of pink mutation increased by 15.7% in PP20 and 95.9 % in PP4, respectively. It is suggested that photoperiod regimes unfavorable to the plant have an additive effect on radiation-induced mutations and a delaying or inhibiting effect on cell damage repair, as well.

  • PDF

Hypersensitivity of Somatic Mutations and Mitotic Recombinations Induced by Heterocyclic amines and Aflatoxin $B_1$ in Transgenic Drosophila (형질전환 초파리에서 Heterocyclic Amines와 Aflatoxin $B_1$에 의한 체세포 돌연변이 유발의 고감수성에 관한 연구)

  • 최영현;유미애;이원호
    • Korean journal of applied entomology
    • /
    • v.35 no.4
    • /
    • pp.315-320
    • /
    • 1996
  • The effects of 2-arnino-3-methyIimidazo[4,5-fq]u inoline (IQ), 2-amino-6dimethyl-dipyrido[l,2-a;3',2'-d] imidazole (Glu-P-1) and aflatoxin B1 (AFBI) on the mitotic recombinations and somatic chromosome mutations were investigated using the transgenic Drosophila bearing a chimeric gene consisting of a promoter region of Drosophila actin 5C gene and rat DNA polymerase $. For investigating mitotic recombinations and the somatic chromosome mutations, the heterozygous (mwhl+) strain possessing or lacking transgene pol P was used. The spontaneous frequency of small mwh spots, due to deletion or nondisjunction etc., in the non-transgenic w strain and the transgenic plpol $1-130 strain was 0.351 and 0.606, respectively. The spontaneous frequency (0.063) of large mwh spots, arising mostly from somatic recombination between the centromere and the locus mwh, in the transgenic plpol $1-130 strain, was about three times higher than that (0.021) of the non-transgenic w strain. The mutant clone frequencies of two types induced by two heterocyclic mines (IQ and Glu-P-1) and AFBl in the transformant pbol PI-130 were two or three times higher than those in the host strain w. These mean that rat DNA polymerase P participates at least in the somatic chromosome mutations and mitotic recombination processes. And the present results suggest that the transgenic Drosophl!~ used in this study can be used as a hypersensitive, in vivo short-term assaying system for various environmental mutagens.

  • PDF

Analysis of Rhizosphere Soil Bacterial Communities on Seonginbong, Ulleungdo Island (울릉도 성인봉의 근권 토양 세균군집 분석)

  • Nam, Yoon-Jong;Yoon, Hyeokjun;Kim, Hyun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.323-328
    • /
    • 2015
  • The study of microbial diversity and richness in soil samples from a volcanic island named Ulleungdo, located east of South Korea. The soil bacterial communities on the Ulleungdo were analyzed using pyrosequencing method based on 16S rRNA gene. There were 1,613 operational taxonomic units (OUT) form soil sample. From results of a BLASTN search against the EzTaxon-e database, the validated reads (obtained after sequence preprocessing) were almost all classified at the phylum level. Proteobacteria was the most dominant phylum with 48.28%, followed by acidobacteria (26.30%), actionbacteria (6.89%), Chloroflexi (4.58), Planctomycetes (4.56%), Nitrospirae (1.83%), Bacteroidetes (1.51%), Verrucomicrobia (1.48%), and Gemmatimonadetes (1.11%). α-proteobacteria was the most dominant class with 36.07% followed by Acidobacteria_c (10.65%), Solibacteres (10.64%), δ-proteobacteria (4.42%), γ-proteobacteria (4.29%), Planctomycetacia (4.16%), Actinobacteria_c (4.00%), Betaproteobacteria (3.50%), EU686603_c (2.97%), Ktedonobacteria (2.91%), Acidimicrobiia (1.32%), Verrucomicrobiae (1.27%), Gemmatimonadetes_c (1.11%), Sphingobacteria (1.09%), and GU444092_c (1.06%). Bradyrhizobiaceae was the most dominant family with 22.83% followed by Acidobacteriaceae (10.62%), EU445199_f (5.72%), Planctomycetaceae (4.03%), Solibacteraceae (3.63%), FM209092_f (3.58%), Steroidobacter_f (2.81%), EU686603_f (2.73%), Hyphomicrobiaceae (2.33%), Ktedonobacteraceae (1.75%), AF498716_f (1.46%), Rhizomicrobium_f (1.03%), and Mycobacteriaceae (1.01%). Differences in the diversity of bacterial communities have more to do with geography than the impact on environmental factors and also the type of vegetation seems to affect the diversity of bacterial communities.