• Title/Summary/Keyword: 환경성능분석

Search Result 6,128, Processing Time 0.041 seconds

OFDM/OQAM-IOTA System With Odd/Even Center Preamble Structure (Odd/Even Center Preamble 구조를 가진 OFDM/OQAM-IOTA 시스템)

  • Kang, Seung-Won;Heo, Joo;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1153-1160
    • /
    • 2005
  • OFDM/OQAM(Offset QAM)-IOTA system requires the IOTA(Isotropic Orthogonal Transform Algorithm) function that has superior localization property in time and frequency domain instead of guard interval used for conventional OFDM/QAM system to be robust to multipath channel. Therefore, OFDM/OQAM-IOTA system has more spectral efficiency than conventional OFDM/QAM system. But, when channel estimation scheme for conventional OFDM/QAM system is applied straightforwardly to OFDM/OQAM-IOTA system, an intrinsic Inter- symbol-Interference is observed. So suitable preamble structure for the channel estimation scheme of OFDM/OQAM-IOTA system is required. In this paper, we propose a new preamble structure that is appropriate to OPDM/OQAM-IOTA system and then perform ideal channel estimation and practical channel estimation in low-to-medium mobile speed and compare them with conventional OFDM/QAM system. Simulation results show that OFDM/OQAM-IOTA system with proposed preamble structure has 1.5 dB Eb/NO gain on Target BER $10^{-3}$ and about $25\%$ transmission rate gain against the conventional OFDM/QAM system considering quarter of FFT size as guard interval size.

A study of feasibility of using compressed wood for LNG cargo containment system (압축목재를 사용한 LNG 화물창 단열시스템의 적합성 평가에 관한 연구)

  • Kim, Jong-Hwan;Ryu, Dong-Man;Park, Seong-Bo;Noh, Byeong-Jae;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.307-313
    • /
    • 2016
  • When liquefied natural gas (LNG) is stored in a tank, it is necessary to maintain low temperature. It is very important that insulation techniques are applied to the LNG cargo because of this extreme environment. Hence, laminated wood, especially plywood, is widely used as the structural member and insulation material in LNG cargo containment systems (CCS). However, fracture of plywood has been reported recently, owing to sloshing effect. Therefore, it is necessary to increase the strength of the structural member for solving the problem. In this study, compressed wood, which is used as a support in LNG independent type B tanks, was considered as a substitute for plywood. Compression and bending tests were performed on compressed wood under ambient and cryogenic temperatures to estimate the mechanical behaviors and fracture characteristics. In addition, the direction normal to the laminates surface was considered as an experimental variable. Finally, the feasibility of using compressed wood for an LNG CCS was evaluated from the test results.

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis (등전위 교번식 직류전위차법의 신호 정밀도 검증을 통한 배관 감육 진단 기술에의 적용성 검증)

  • Ryu, Kyung-Ha;Hwang, Il-Soon;Kim, Ji-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

레일레이 입사각에서 Schoch 변위가 액체/고체 경계면으로부터 후방산란되는 초음파 에너지에 미치는 영향

  • Lee Jeong-Ki;Kim H. C.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.409-416
    • /
    • 1999
  • 액체/고체 경계면에 레일레이각으로 초음파 pulse를 입사시키면 입사된 에너지의 상당 부분이 고체쪽으로 침투여 표면으로부터 약 1.5 파장 깊이 정도까지 에너지 분포를 가지고 고체 표면을 따라 전파하는 레일레 이파로 전환되며, 이러한 입사각에서는 기하학적인 거울 반사가 일어나지 않고 반사파의 중심이 Schoch 변위만큼 전방으로 이동되고, 또 입사 방향으로 후반 산란되는 초음파의 신호가 급격히 증가하는 현상이 관찰된다. 만일 고체에서 초음파의 감쇠가 산란에 의해 크게 영향을 받고, 레일레이각에서 고체 쪽으로 침투한 에너지의크기를 $E_0$라고 하면, 고체 표면과 표면 근처를 전파하는 레일레이파의 산란파 에너지, $E_S$는 Schoch 변위, ${\Delta}_S$와 산란에 의한 감쇠계수 ${\alpha}_S$에 비례하는 관계가 있음을 이론적으로 구하였다. 입사 방향으로 후방산란되는 초음파는 산란파의 일부이므로 후방산란 초음파 에너지, E_{Bs}도 이와 같은 관계를 가진다. 그러므로, 레일레이각으로 입사된 초음파의 후방산란 에너지, $E_{B_S}$ 산란체(e.g. grain)의 평균 크기, D와 주파수 f와는 레일레이 산란 영역과 Stochastic 산란 영역에 대해 각각 $E_{B_S}\;\propto\;D^{3}f^{3}$$E_{B_S}\;\propto\;D\;f$인 관계를 가지는 것으로 얻어졌다. 이것은 액체/고체 경계면에서 레일레이각으로 입사되어 레일레이파로 전환된 초음파가 다시 액체로 그 에너지를 누설하여 그 산란 영역이 Schoch 변위 내에서 일어나기 때문이며, 이러한 영향에 의해서일반적인 산란에서의 주파수 의존성과는 달리 각 산란 영역에서 그 지수는 1씩 작은 값을 갖는다.향에 따라 음장변화가 크게 다를 것이 예상되므로 이를 규명하기 위해서는 궁극적으로 3차원적인 음장분포 연구가 필요하다. 음향센서를 해저면에 매설할 경우 수충의 수온변화와 센서 주변의 수온변화 사이에는 어느 정도의 시간지연이 존재하게 되므로 이에 대한 영향을 규명하는 것도 센서의 성능예측을 위해서 필요하리라 사료된다.가지는 심부 가스의 개발 성공률을 증가시키기 위하여 심부 가스가 존재하는 지역의 지질학적 부존 환경 및 조성상의 특성과 생산시 소요되는 생산비용을 심도에 따라 분석하고 생산에 수반되는 기술적 문제점들을 정리하였으며 마지막으로 향후 요구되는 연구 분야들을 제시하였다. 또한 참고로 현재 심부 가스의 경우 미국이 연구 개발 측면에서 가장 활발한 활동을 전개하고 있으며 그 결과 다수의 신뢰성 있는 자료들을 확보하고 있으므로 본 논문은 USGS와 Gas Research Institute(GRI)에서 제시한 자료에 근거하였다.ऀĀ耀Ā삱?⨀؀Ā Ā?⨀ጀĀ耀Ā?돀ꢘ?⨀硩?⨀ႎ?⨀?⨀넆돐쁖잖⨀쁖잖⨀/ࠐ?⨀焆덐瀆倆Āⶇ퍟ⶇ퍟ĀĀĀĀ磀鲕좗?⨀肤?⨀⁅Ⴅ?⨀쀃잖⨀䣙熸ጁ↏?⨀

  • PDF

A Curve-Fitting Channel Estimation Method for OFDM System in a Time-Varying Frequency-Selective Channel (시변 주파수 선택적 채널에서 OFDM시스템을 위한 Curve-Fitting 채널추정 방법)

  • Oh Seong-Keun;Nam Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.49-58
    • /
    • 2006
  • In this paper, a curve-fitting channel estimation method is proposed for orthogonal frequency division multiplexing (OFDM) system in a time-varying frequency-selective fading channel. The method can greatly improve channel state information (CSI) estimation accuracy by performing smoothing and interpolation through consecutive curve-fitting processes in both time domain and frequency domain. It first evaluates least-squares (LS) estimates using pilot symbols and then the estimates are approximated to a polynomial with proper degree in the LS error sense, starting from one preferred domain in which pilots we densely distributed. Smoothing, interpolation, and prediction are performed subsequently to obtain CSI estimates for data transmission. The channel estimation processes are completed by smoothing and interpolating CSI estimates in the other domain once again using the channel estimates obtained in one domain. The performance of proposed method is influenced heavily on the time variation and frequency selectivity of channel and pilot arrangement. Hence, a proper degree of polynomial and an optimum approximation interval according to various system and channel conditions are required for curve-fitting. From extensive simulation results in various channel environments, we see that the proposed method performs better than the conventional methods including the optimal Wiener filtering method, in terms of the mean square error (MSE) and bit error rate (BER).

Air Quality Monitoring System Using NDIR-CO$_2$ Sensor for Underground Space based on Wireless Sensor Network (비분산적의선 CO$_2$센서를 이용한 무선 센서 네트워크 기반의 지하 공기질 모니터링 시스템)

  • Kwon, Jong-Won;Kim, Jo-Chun;Kim, Gyu-Sik;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.28-38
    • /
    • 2009
  • In this study, a remote air quality monitoring system for underground spaces was developed by using NDIR-based CO$_2$ sensor. And the remote monitoring system based on wireless sensor networks was installed practically on the subway station platform. More than 6.5 million citizens commutate everyday by the Seoul subway transportation that is the most typical public transportation. They concern about air quality with increasing interest on public health or many workers in subway stations or underground shopping centers. Recently, the Korean Ministry of Environment has operated the air quality monitoring system in some subway stations for testing phase. However, it showed many defects which are large-scale, high-cost and maintenance of precision sensors imported from abroad. Therefore this research includes the reliability test and a theoretical study about the inexpensive commercialized CO$_2$ sensor for reliable measurement of air quality which changes rapidly by the surrounding environments. And then we develop the wireless sensor nodes and the gateway applied for remote air quality monitoring. In addition, web server program was realized to manage air quality in the subway platform. This result will be valuable for a basic research for air quality management in underground spaces for future study.

An elastic distributed parallel Hadoop system for bigdata platform and distributed inference engines (동적 분산병렬 하둡시스템 및 분산추론기에 응용한 서버가상화 빅데이터 플랫폼)

  • Song, Dong Ho;Shin, Ji Ae;In, Yean Jin;Lee, Wan Gon;Lee, Kang Se
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1129-1139
    • /
    • 2015
  • Inference process generates additional triples from knowledge represented in RDF triples of semantic web technology. Tens of million of triples as an initial big data and the additionally inferred triples become a knowledge base for applications such as QA(question&answer) system. The inference engine requires more computing resources to process the triples generated while inferencing. The additional computing resources supplied by underlying resource pool in cloud computing can shorten the execution time. This paper addresses an algorithm to allocate the number of computing nodes "elastically" at runtime on Hadoop, depending on the size of knowledge data fed. The model proposed in this paper is composed of the layered architecture: the top layer for applications, the middle layer for distributed parallel inference engine to process the triples, and lower layer for elastic Hadoop and server visualization. System algorithms and test data are analyzed and discussed in this paper. The model hast the benefit that rich legacy Hadoop applications can be run faster on this system without any modification.

Implementation of Smart Metering System Based on Deep Learning (딥 러닝 기반 스마트 미터기 구현)

  • Sun, Young Ghyu;Kim, Soo Hyun;Lee, Dong Gu;Park, Sang Hoo;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.829-835
    • /
    • 2018
  • Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.

A Study on the Coolant leaks Prevention Design of Heaters for Combat Vehicles (전투차량용 온수히터 냉각수 누수방지 설계에 관한 연구)

  • Park, Dong Min;Kwak, Daehwan;Jang, Jongwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.379-385
    • /
    • 2020
  • This paper presents a design for preventing coolant leaks in the core part of a heater mounted in a combat vehicle. The heater is a device that makes heated coolant flow through the heater core in the crew room. A problem with coolant leaks in the heater core area during the operation of a combat vehicle was identified. This problem is caused mainly by high pressure at the junction of the tank and tube due to the vulnerability of this area. To solve this problem, an improved core was made by improving the welding method and changing the end region of the heater core to a structure that can withstand high pressure. When pressure was applied sequentially to the existing core and improved core, a leak occurred at 7.0 kgf/㎠ in the existing core while the improved core maintained its structure up to 17.0 kgf/㎠, highlighting the improvement. Finally, performance tests and environment tests were conducted to demonstrate the suitability of the improved structure. The improved heater will be applied to combat vehicles. This paper is expected to serve as a reference for improving defense capabilities by securing reliability as well as the design and analysis of failures of similar equipment.nse capabilities through securing reliability as well as the design and analysis of failures of similar equipment.