• Title/Summary/Keyword: 환경라벨링

Search Result 68, Processing Time 0.029 seconds

An Analysis on the Phoneme Duration Modeling For the Trainable TTS System (Trainable TTS System을 위한 음운 지속시간 모델링)

  • Seo Jiln;Lee Yanghee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.109-112
    • /
    • 2001
  • 본 논문에서는 한국어 Trainable TTS System의 자연스러운 음성 합성을 위해 400문장(어절수 : 6,220, 음운수: 총43,701: 자음 23,899,모음: 19,802)에 대하여 단일 남성화자가 발성한 문 음성 데이터를 음운레벨세그먼트, 음운 라벨링 ,어절간의 띄어쓰기 ,어절에 대한 음운별 품사가 태깅된 문 음성 코퍼스를 사용하여 음운 환경과 품사에 의하여 음운의 지속시간이 어떻게 변화하는가에 대하여 통계적으로 분석하였다. 그리고 음운 지속시간을 보다 정교하게 예측하기 위하여, 각 음운에 대한 고유 지속시간의 영향이 배제된 정규화 음운지속시간에 대한 회귀트리를 이용하여 정규화 지속시간에 영향을 미치는 특징요소들 간의 관계를 통계적인 방법으로 분석하였다. 그 결과 문법적인 특징요소를 나타내는 요소들간에 서로 상관이 높게 나타나는 것을 알 수 있었다 그리고 이러한 경우 유사한 특징 요소들간에 상관이 1에 가까울 정도로 상관이 높은 요소들의 경우 예측지수가 낮은 요소들을 제거하여도 지속시간변화에 영향을 미치지 못하는 것으로 나타났다. 그 결과 문법적 성질이 유사한 특징 요소들을 회귀트리를 통해 모델링할 경우에 요소들간의 상관정도를 분석하여 최소한의 특징요소들을 선택 할 수 있는 방법을 제시하였다 그리고 이를 토대로 한 정규화 회귀트리의 모델링이 지속시간 회귀트리 모델링보다 우수함을 입증하였다.

  • PDF

A Study on the Improvement of Creative Environment to Reduce the Incurable Disease of Artists (아티스트의 난치병 발병 저감을 위한 창작 환경 개선방안 연구)

  • Joh, Myung-Gye
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.3
    • /
    • pp.3-13
    • /
    • 2019
  • Purpose: The human body is a chemical laboratory. Artists are exposed to a variety of chemicals in art studio space and the art materials used in the creation contain toxic ingredients, exposing them to a variety of incurable diseases, including cancer. It aims to analyze the problems of the studio space environment and the risks of art materials, which are fundamental causes of the outbreak of incurable diseases, and to derive the direction of specific practices that can reduce the occurrence of incurable diseases by artists. Method: The harmfulness of an artist's creative space is the cause of a disease outbreak, and two primary factors cause it. One is the environmental hazards caused by the use of tools, air pollution, and chemical hazards caused by art materials in the architectural space environment of the studio. Necessary measures are put forward to control disease outbreaks by identifying the status and cause of intractable diseases caused by studies. Result: The plan is urgent for the establishment of safety rules and regular pre-trainthese two factors and analyzing the results of prior research and implementation investigationing, the legal provisions of studio architecture design and the introduction of labelling rules to control the distribution of harmful art materials.

Improving Efficiency of Object Detection using Multiple Neural Networks (다중 신경망을 이용한 객체 탐지 효율성 개선방안)

  • Park, Dae-heum;Lim, Jong-hoon;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.154-157
    • /
    • 2022
  • In the existing Tensorflow CNN environment, the object detection method is a method of performing object labeling and detection by Tensorflow itself. However, with the advent of YOLO, the efficiency of image object detection has increased. As a result, more deep layers can be built than existing neural networks, and the image object recognition rate can be increased. Therefore, in this paper, the detection ability and speed were compared and analyzed by designing an object detection system based on Darknet and YOLO and performing multi-layer construction and learning based on the existing convolutional neural network. For this reason, in this paper, a neural network methodology that efficiently uses Darknet's learning is presented.

  • PDF

Robust Detection Deep Learning Model in the Various Exterior Wall Cracks (다양한 외벽 균열에 강인한 딥러닝 검출 모델 개발)

  • Kim, Gyeong-Yeong;Lee, Ho-Ryeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.53-56
    • /
    • 2021
  • 국내 산업화가 들어선 후 산업화 당시 지었던 낙후된 건물의 증가에 따라 구조물의 손상 조사 및 검사 방법의 수요가 늘어나고 있다. 일반적으로 구조물의 손상은 전문 검사원이 현장에서 직접 측량도구와 시각적인 방식으로 검사한다. 그러나 전문 검사원들이 직접 조사하는 수고에 비해 균열을 검사하는 방식 자체가 단순하고, 일반 사람이 검사하기에는 객관성이 떨어지는 한계가 있어 균열을 자동적으로 검출함으로써 객관성과 편의성을 보장할 기술이 필요하다. 본 연구에서는 이미지 기반으로 다양한 환경에서의 외벽 균열을 검출할 수 있는 딥러닝 모델 개발을 소개한다. 균열 검출을 위해 다양한 외벽 균열 관련 데이터셋을 확보 및 구축하고 각 데이터셋의 검출 정보를 보완할 반자동(semi-auto) 라벨링 작업을 수행하였다. 두 번째로 기존 높은 검출 성능을 보였던 모델들을 선정 및 비교하여 YOLO v5 모델을 최종적으로 선정하였고, 도메인이 각각 다른 데이터셋에 대한 교차 학습을 통해 각 데이터셋의 mAP의 편차가 31%에서 11%로 좁히는 작업을 수행하였다. 이를 통해 실제 상황에서의 균열 영상에서 균열을 검출할 수 있는 측량 시스템을 개발함으로써 실질적인 검사의 도구로 활용될 수 있길 기대한다.

  • PDF

Object Tracking Method using Difference Images (차분 영상을 이용한 객체 추적 방법)

  • Cho, Jin-Hwan;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.165-168
    • /
    • 2021
  • Recently, the spread of deep learning environments has increased the importance of dataset generation. In this paper, we aim to design and implement a method for capturing rotating images of objects and performing object tracking on them for efficient dataset generation. The method implemented in this paper is to obtain image data by rotating objects to capture multiple angles of objects, detect and track objects through background removal and difference image processing techniques, showing them on screen to monitor object tracking results in the current frame. It was then implemented to return object location data within the image for use as a dataset.

  • PDF

Develpment of Automatic Classification For Categorizing Recyclable Materials (딥러닝을 활용한 재활용 폐기물 선별 시스템 개발)

  • Park Seung Woo;Kim Hyung Don;Sim Sang Woo;Yoo, Seong Won;Kim Jae-Soo;Lee Sang Won;Jeon Woo jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.739-740
    • /
    • 2023
  • 코로나19 의 여파로 생활 폐기물은 급속도로 늘어나는 반면 재활용 사업장의 여건은 개선되지 않고 있어 재활용 산업의 인력난 해결의 필요성이 떠오르고 있다. 이를 위해 본 논문에서는 딥러닝 모델을 활용하여 재활용 폐기물을 분류하는 방법을 제시한다. 딥러닝 모델은 최신 객체 탐지 모델인 YOLOv5를 사용하고, 객체 탐지 성능을 향상시키기 위해 실제 환경에서 수집된 학습용 데이터를 직접 라벨링하여 사용한다. 실험 결과 종류별 평균 0.69의 mAP50 스코어를 기록하였으며 이를 통해 딥러닝 모델을 활용하여 재활용 폐기물을 효율적으로 분류하는 것이 가능함을 확인하였다.

  • PDF

Labeling network applicaion study policy settings for optimized transmission of multimedia internet (멀티미디어 인터넷망의 최적화 전송을 위한 라벨링망 응용 정책설정 고찰)

  • Gu, Hyun-Sil;Hwang, Seong-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1780-1784
    • /
    • 2015
  • Traditional IP routing, see only the Destination Address When Forwarding Layer 3 routing and exchange information and Destination-Based Routing Lookup is required for all Hop. Thus, all routers Full Internet routing information, the route information of more than about 120,000 may require. Therefore, the router configuration, which can be dispersed in the environment, the traffic load is required in accordance with this congestion. In this study, a unique characteristic of the Internet in the environment of an existing network Best Effect for QoS guarantee and hardware high speed switching of large multimedia data transmitted using a Labeling for forwarding a packet environment configuration is required. Video Stream Broadcast Transport Labeling rather than in much of the higher performance of the multi-step policy to most of the Video Stream Packet deulim was fixed to Labeling Header Format proposes a method of applying an effective QoS policy to a more simplified policy.

A Study of AI-based Monitoring Techniques for Land-based Debris in Stream (AI기반 하천 부유쓰레기 모니터링 기술 연구)

  • Kyungsu Lee;Haein Yoon;Jonghwa Won;Sang Hwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.137-137
    • /
    • 2023
  • 해양쓰레기는 해안의 심미적 가치 저하뿐만 아니라 생태계 파괴, 유령 어업에 따른 수산업 피해 등의 사회적·환경적 문제를 발생시키며, 그중 70% 이상은 육상 기인으로 플라스틱 및 기타 쓰레기가 주를 이루는 해외와 달리 국내의 경우 다량의 초목류를 포함하고 있다. 다양한 부유쓰레기에 대한 기존의 해양쓰레기량 추정의 한계와 하천·하구 쓰레기 수거의 효율화를 위해 해양으로 유입되는 부유쓰레기 방지를 위한 실효성 있는 대책 수립이 필요한 실정이다. 본 연구는 해양 유입 전 하천의 차단시설에 차집된 부유쓰레기의 수거 효율화 및 지속가능한 해양쓰레기 데이터 구축을 위해 AI기반의 기술을 통해 부유쓰레기 성상 분석 기법(Object Detection)과 차집량 분석 기법(Semantic Segmentation)을 활용하였다. 실제와 유사한 데이터 수집을 위해 다양한 하천 환경(정수조, 소하천, 급경사수로)에 대해 탁도(녹조, 유사), 광량, 쓰레기형상, 초목류 함량, 날씨(소하천), 유속(급경사수로) 등의 실험조건에 대하여 해양쓰레기 분류 기준 및 통계를 바탕으로 부유쓰레기 종류 선정하여 학습을 위한 데이터를 수집하였다. 학습 목적에 따라 구분하여 라벨링(Bounding box, Polygon)을 수행하고, 각 분석 기법별 전이학습을 통해 Phase 1(정수조), Phase 2(소하천), Phase 3(급경사수로) 순서로 모델을 고도화하였다. 성상 분석을 위해 YOLO v4를 활용하여 Train, Test DataSet(9:1)을 구성하고 학습 및 평가는 Iteration마다의 mAP, loss 값을 통해 비교하였으며, 학습 Phase에 따라 모델 고도화로 Test Set의 mAP 값이 성상별로 높아짐을 확인하였으며, 차집량 분석을 위해 Unet을 활용하여 Train, Test, Validation DataSet(8.5:1:0.5)을 구성하고 epoch별 IoU(intersection over Union), F1-score, loss 값을 비교하여 정성적, 정량적 평가 모두 Phase 3에서 가장 높은 성능을 확인하였다. 향후 하천 환경에서의 다양한 영양인자별 분석을 통해 주요 영향인자 도출 및 Hyper Parameter 최적화를 통한 모델 고도화로 인해 활용성이 높아질 것으로 판단된다.

  • PDF

Panorama Image Stitching Using Sythetic Fisheye Image (Synthetic fisheye 이미지를 이용한 360° 파노라마 이미지 스티칭)

  • Kweon, Hyeok-Joon;Cho, Donghyeon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.20-30
    • /
    • 2022
  • Recently, as VR (Virtual Reality) technology has been in the spotlight, 360° panoramic images that can view lively VR contents are attracting a lot of attention. Image stitching technology is a major technology for producing 360° panorama images, and many studies are being actively conducted. Typical stitching algorithms are based on feature point-based image stitching. However, conventional feature point-based image stitching methods have a problem that stitching results are intensely affected by feature points. To solve this problem, deep learning-based image stitching technologies have recently been studied, but there are still many problems when there are few overlapping areas between images or large parallax. In addition, there is a limit to complete supervised learning because labeled ground-truth panorama images cannot be obtained in a real environment. Therefore, we produced three fisheye images with different camera centers and corresponding ground truth image through carla simulator that is widely used in the autonomous driving field. We propose image stitching model that creates a 360° panorama image with the produced fisheye image. The final experimental results are virtual datasets configured similar to the actual environment, verifying stitching results that are strong against various environments and large parallax.

Satellite Remote Sensing Application: Facilities Analysis of Laver Cultivation Grounds System (인공위성 원격탐사의 활용: 김양식장의 현황 모니터링)

  • Yang, Chan-Su;Moon, Jeong-Eon;Lee, Nu-Ree;Park, Sung-Woo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.47-52
    • /
    • 2006
  • The cultural grounds of laver has been surveyed using SPOT-5 satellite images to calculate the facilities of laver cultivation area in the coastal waters of Korea 10m resolution multispectral images of SPOT-5 are adopted for the south area of Daebu Island, Hwaseong city to develop an automatic detection approach of laver nets that consists of the following: band difference technique, canny edge detector and morphological analysis. The satellite-based facilities number was relatively high as compared with the licensed number in 2005, 676,749 chaek and 572,745 chaek(柵, unit of measure for laver farm), respectively. The data could be applied to achieve a good harvest for laver seaweed growers and to control its national production keeping a stable market price for the government body.

  • PDF