• Title/Summary/Keyword: 확률 추론

Search Result 274, Processing Time 0.032 seconds

Weighting Effect on the Weighted Mean in Finite Population (유한모집단에서 가중평균에 포함된 가중치의 효과)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.7 no.2
    • /
    • pp.53-69
    • /
    • 2006
  • Weights can be made and imposed in both sample design stage and analysis stage in a sample survey. While in design stage weights are related with sample data acquisition quantities such as sample selection probability and response rate, in analysis stage weights are connected with external quantities, for instance population quantities and some auxiliary information. The final weight is the product of all weights in both stage. In the present paper, we focus on the weight in analysis stage and investigate the effect of such weights imposed on the weighted mean when estimating the population mean. We consider a finite population with a pair of fixed survey value and weight in each unit, and suppose equal selection probability designs. Under the condition we derive the formulas of the bias as well as mean square error of the weighted mean and show that the weighted mean is biased and the direction and amount of the bias can be explained by the correlation between survey variate and weight: if the correlation coefficient is positive, then the weighted mein over-estimates the population mean, on the other hand, if negative, then under-estimates. Also the magnitude of bias is getting larger when the correlation coefficient is getting greater. In addition to theoretical derivation about the weighted mean, we conduct a simulation study to show quantities of the bias and mean square errors numerically. In the simulation, nine weights having correlation coefficient with survey variate from -0.2 to 0.6 are generated and four sample sizes from 100 to 400 are considered and then biases and mean square errors are calculated in each case. As a result, in the case or 400 sample size and 0.55 correlation coefficient, the amount or squared bias of the weighted mean occupies up to 82% among mean square error, which says the weighted mean might be biased very seriously in some cases.

  • PDF

Design and Evaluation of a Fuzzy Logic based Multi-hop Broadcast Algorithm for IoT Applications (IoT 응용을 위한 퍼지 논리 기반 멀티홉 방송 알고리즘의 설계 및 평가)

  • Bae, Ihn-han;Kim, Chil-hwa;Noh, Heung-tae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2016
  • In the future network such as Internet of Things (IoT), the number of computing devices are expected to grow exponentially, and each of the things communicates with the others and acquires information by itself. Due to the growing interest in IoT applications, the broadcasting in Opportunistic ad-hoc networks such as Machine-to-Machine (M2M) is very important transmission strategy which allows fast data dissemination. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose a fuzzy logic based probabilistic multi-hop broadcast (FPMCAST) algorithm which statistically disseminates data accordingly to the remaining energy rate, the replication density rate of sending node, and the distance rate between sending and receiving nodes. In proposed FPMCAST, the inference engine is based the fuzzy rule base which is consists of 27 if-then rules. It maps input and output parameters to membership functions of input and output. The output of fuzzy system defines the fuzzy sets for rebroadcasting probability, and defuzzification is used to extract a numeric result from the fuzzy set. Here Center of Gravity (COG) method is used to defuzzify the fuzzy set. Then, the performance of FPMCAST is evaluated through a simulation study. From the simulation, we demonstrate that the proposed FPMCAST algorithm significantly outperforms flooding and gossiping algorithms. Specially, the FPMCAST algorithm has longer network lifetime because the residual energy of each node consumes evenly.

Learning Spatio-Temporal Topology of a Multiple Cameras Network by Tracking Human Movement (사람의 움직임 추적에 근거한 다중 카메라의 시공간 위상 학습)

  • Nam, Yun-Young;Ryu, Jung-Hun;Choi, Yoo-Joo;Cho, We-Duke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.488-498
    • /
    • 2007
  • This paper presents a novel approach for representing the spatio-temporal topology of the camera network with overlapping and non-overlapping fields of view (FOVs) in Ubiquitous Smart Space (USS). The topology is determined by tracking moving objects and establishing object correspondence across multiple cameras. To track people successfully in multiple camera views, we used the Merge-Split (MS) approach for object occlusion in a single camera and the grid-based approach for extracting the accurate object feature. In addition, we considered the appearance of people and the transition time between entry and exit zones for tracking objects across blind regions of multiple cameras with non-overlapping FOVs. The main contribution of this paper is to estimate transition times between various entry and exit zones, and to graphically represent the camera topology as an undirected weighted graph using the transition probabilities.

A Context Recognition System for Various Food Intake using Mobile and Wearable Sensor Data (모바일 및 웨어러블 센서 데이터를 이용한 다양한 식사상황 인식 시스템)

  • Kim, Kee-Hoon;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.531-540
    • /
    • 2016
  • Development of various sensors attached to mobile and wearable devices has led to increasing recognition of current context-based service to the user. In this study, we proposed a probabilistic model for recognizing user's food intake context, which can occur in a great variety of contexts. The model uses low-level sensor data from mobile and wrist-wearable devices that can be widely available in daily life. To cope with innate complexity and fuzziness in high-level activities like food intake, a context model represents the relevant contexts systematically based on 4 components of activity theory and 5 W's, and tree-structured Bayesian network recognizes the probabilistic state. To verify the proposed method, we collected 383 minutes of data from 4 people in a week and found that the proposed method outperforms the conventional machine learning methods in accuracy (93.21%). Also, we conducted a scenario-based test and investigated the effect contribution of individual components for recognition.

A Logit Model for Repeated Binary Response Data (반복측정의 이가반응 자료에 대한 로짓 모형)

  • Choi, Jae-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.291-299
    • /
    • 2008
  • This paper discusses model building for repeated binary response data with different time-dependent covariates each occasion. Since repeated measurements data are having correlated structure, weighed least squares(WLS) methodology is applied. Repeated measures designs are usually having different sizes of experimental units like split-plot designs. However repeated measures designs differ from split-plot designs in that the levels of one or more factors cannot be randomly assigned to one or more of the sizes of experimental units in the experiment. In this case, the levels of time cannot be assigned at random to the time intervals. Because of this nonrandom assignment, the errors corresponding to the respective experimental units may have a covariance matrix. So, the estimates of effects included in a suggested logit model are obtained by using covariance structures.

Intelligent Adaptive Active Noise Control in Non-stationary Noise Environments (비정상 잡음환경에서의 지능형 적응 능동소음제어)

  • Mu, Xiangbin;Ko, JinSeok;Rheem, JaeYeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.408-414
    • /
    • 2013
  • The famous filtered-x least mean square (FxLMS) algorithm for active noise control (ANC) systems may become unstable in non-stationary noise environment. To solve this problem, Sun's algorithm and Akhtar's algorithm are developed based on modifying the reference signal in update of FxLMS algorithm, but these two algorithms have dissatisfactory stability in dealing with sustaining impulsive noise. In proposed algorithm, probability estimation and zero-crossing rate (ZCR) control are used to improve the stability and performance, at the same time, an optimal parameter selection based on fuzzy system is utilized. Computer simulation results prove the proposed algorithm has faster convergence and better stability in non-stationary noise environment.

Design and Implementation of Contents based on XML for Efficient e-Learning System (e-Learning 시스템을 위한 XML기반 효율적인 교육 컨텐츠의 설계 및 구현)

  • Kim, Young-Gi;Han, Sun-Gwan
    • Journal of The Korean Association of Information Education
    • /
    • v.5 no.2
    • /
    • pp.279-287
    • /
    • 2001
  • In this paper, we have defined and designed the structure of standardized XML content for supplying efficient e-Learning contents. We have also implemented the prototype of XML contents generator to create the educational contents easily. In addition, we have suggested the contents searching method using Case Base Reasoning and Bayesian belief network to supply XML contents suitable to learners request. The existing e-Learning system based on HTML could not customize and standardize, but XML contents can be reused and made an intelligent learning by supplying an adaptive content according to learners level. For evaluating the efficiency of designed XML content, we make the standard XML content for learning JAVA program in e-Learning system as well as discussing about the integrity and expanding the educational content. Finally, we have shown the architecture and effectiveness of the knowledge-based XML contents retrieval manager.

  • PDF

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

The ex-Gaussian analysis of reaction time distributions for cognitive experiments (ex-Gaussian 모형을 활용한 인지적 과제의 반응시간 분포 분석)

  • Park, Hyung-Bum;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2014
  • Although most behavioral reaction times (RTs) for cognitive tasks exhibit positively skewed distributions, the majority of studies primarily rely on a measure of central tendency (e.g. mean) which can cause misinterpretations of data's underlying property. The purpose of current study is to introduce procedures for describing characteristics of RT distributions, thereby effectively examine the influence of experimental manipulations. On the basis of assumption that RT distribution can be represented as a convolution of Gaussian and exponential variables, we fitted the ex-Gaussian function under a maximum-likelihood method. The ex-Gaussian function provides quantitative parameters of distributional properties and the probability density functions. Here we exemplified distributional analysis by using empirical RT data from two conventional visual search tasks, and attempted theoretical interpretation for setsize effect leading proportional mean RT delays. We believe that distributional RT analysis with a mathematical function beyond the central tendency estimates could provide insights into various theoretical and individual difference studies.

Bayesian Clustering of Prostate Cancer Patients by Using a Latent Class Poisson Model (잠재그룹 포아송 모형을 이용한 전립선암 환자의 베이지안 그룹화)

  • Oh Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • Latent Class model has been considered recently by many researchers and practitioners as a tool for identifying heterogeneous segments or groups in a population, and grouping objects into the segments. In this paper we consider data on prostate cancer patients from Korean National Cancer Institute and propose a method for grouping prostate cancer patients by using latent class Poisson model. A Bayesian approach equipped with a Markov chain Monte Carlo method is used to overcome the limit of classical likelihood approaches. Advantages of the proposed Bayesian method are easy estimation of parameters with their standard errors, segmentation of objects into groups, and provision of uncertainty measures for the segmentation. In addition, we provide a method to determine an appropriate number of segments for the given data so that the method automatically chooses the number of segments and partitions objects into heterogeneous segments.