• Title/Summary/Keyword: 확률적 회귀모형

Search Result 186, Processing Time 0.027 seconds

Crime Incident Prediction Model based on Bayesian Probability (베이지안 확률 기반 범죄위험지역 예측 모델 개발)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Crime occurs differently based on not only place locations and building uses but also the characteristics of the people who use the place and the spatial structures of the buildings and locations. Therefore, if spatial big data, which contain spatial and regional properties, can be utilized, proper crime prevention measures can be enacted. Recently, with the advent of big data and the revolutionary intelligent information era, predictive policing has emerged as a new paradigm for police activities. Based on 7420 actual crime incidents occurring over three years in a typical provincial city, "J city," this study identified the areas in which crimes occurred and predicted risky areas. Spatial regression analysis was performed using spatial big data about only physical and environmental variables. Based on the results, using the street width, average number of building floors, building coverage ratio, the type of use of the first floor (Type II neighborhood living facility, commercial facility, pleasure use, or residential use), this study established a Crime Incident Prediction Model (CIPM) based on Bayesian probability theory. As a result, it was found that the model was suitable for crime prediction because the overlap analysis with the actual crime areas and the receiver operating characteristic curve (Roc curve), which evaluated the accuracy of the model, showed an area under the curve (AUC) value of 0.8. It was also found that a block where the commercial and entertainment facilities were concentrated, a block where the number of building floors is high, and a block where the commercial, entertainment, residential facilities are mixed are high-risk areas. This study provides a meaningful step forward to the development of a crime prediction model, unlike previous studies that explored the spatial distribution of crime and the factors influencing crime occurrence.

Technology Innovation Activity and Default Risk (기술혁신활동이 부도위험에 미치는 영향 : 한국 유가증권시장 및 코스닥시장 상장기업을 중심으로)

  • Kim, Jin-Su
    • Journal of Technology Innovation
    • /
    • v.17 no.2
    • /
    • pp.55-80
    • /
    • 2009
  • Technology innovation activity plays a pivotal role in constructing the entrance barrier for other firms and making process improvement and new product. and these activities give a profit increase and growth to firms. Thus, technology innovation activity can reduce the default risk of firms. However, technology innovation activity can also increase the firm's default risk because technology innovation activity requires too much investment of the firm's resources and has the uncertainty on success. The purpose of this study is to examine the effect of technology innovation activity on the default risk of firms. This study's sample consists of manufacturing firms listed on the Korea Securities Market and The Kosdaq Market from January 1,2000 to December 31, 2008. This study makes use of R&D intensity as an proxy variable of technology innovation activity. The default probability which proxies the default risk of firms is measured by the Merton's(l974) debt pricing model. The main empirical results are as follows. First, from the empirical results, it is found that technology innovation activity has a negative and significant effect on the default risk of firms independent of the Korea Securities Market and Kosdaq Market. In other words, technology innovation activity reduces the default risk of firms. Second, technology innovation activity reduces the default risk of firms independent of firm size, firm age, and credit score. Third, the results of robust analysis also show that technology innovation activity is the important factor which decreases the default risk of firms. These results imply that a manager must show continuous interest and investment in technology innovation activity of one's firm. And a policymaker also need design an economic policy to promote the technology innovation activity of firms.

  • PDF

A Study on the Disaster Prevention of the Royal Tomb Eureung in the Mountain Cheonjang - Estimation on Forest Fire Risk Considering Forest Type and Topography - (천장산 의릉의 방재대책에 관한 연구 - 임상과 지형인자를 고려한 산불위험성 평가 -)

  • Won, Myoung-Soo;Lee, Woo-Kyun;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The purpose of this study is to analyze the risk of the forest fire, considering the topography and the forest, for establishing disaster prevention measures of cultural heritage, Uireung, over in Cheonjang-mountain. To do that, we estimate the occurrence and spread of the forest fire over in Cheonjang-mountain through a forest fire probability model(logistic regression), using the space characteristic data($100m{\times}100m$). The factor, occurrence of the forest fire, are diameter class, southeast, southwest, south, coniferous, deciduous, and mixed forest. We assume the probability of the fire forest in each point as follow : [1+exp{-(-4.8081-(0.02453*diameter class)+(0.6608*southeast)+(0.507*southwest)+(0.7943*south)+(0.29498*coniferous forest)+(0.28897*deciduous forest)+(0.17788*mixed forest))}]$^{-1}$. To divide dangerous zone of the big forest fire, we make the basic materials for disaster prevention measures, through the map of coniferous forests, deciduous forests, and mixed forest. The damage of cultural heritage caused by a forest fire will be reduced through the effective preventive measures, by forecast a forest fire to using this study.

Factors Influencing the Activation of Brown Adipose Tissue in 18F-FDG PET/CT in National Cancer Center (양전자방출단층촬영 시 갈색지방조직 활성화에 영향을 미치는 요인 분석)

  • You, Yeon Wook;Lee, Chung Wun;Jung, Jae Hoon;Kim, Yun Cheol;Lee, Dong Eun;Park, So Hyeon;Kim, Tae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Purpose Brown fat, or brown adipose tissue (BAT), is involved in non-shivering thermogenesis and creates heat through glucose metabolism. BAT activation occurs stochastically by internal factors such as age, sex, and body mass index (BMI) and external factors such as temperature and environment. In this study, as a retrospective, electronic medical record (EMR) observation study, statistical analysis is conducted to confirm BAT activation and various factors. Materials and Methods From January 2018 to December 2019, EMR of patients who underwent PET/CT scan at the National Cancer Center for two years were collected, a total of 9155 patients were extracted, and 13442 case data including duplicate scan were targeted. After performing a univariable logistic regression analysis to determine whether BAT activation is affected by the environment (outdoor temperature) and the patient's condition (BMI, cancer type, sex, and age), A multivariable regression model that affects BAT activation was finally analyzed by selecting univariable factors with P<0.1. Results BAT activation occurred in 93 cases (0.7%). According to the results of univariable logistic regression analysis, the likelihood of BAT activation was increased in patients under 50 years old (P<0.001), in females (P<0.001), in lower outdoor temperature below 14.5℃ (P<0.001), in lower BMI (P<0.001) and in patients who had a injection before 12:30 PM (P<0.001). It decreased in higher BMI (P<0.001) and in patients diagnosed with lung cancer (P<0.05) In multivariable results, BAT activation was significantly increased in patients under 50 years (P<0.001), in females (P<0.001) and in lower outdoor temperature below 14.5℃ (P<0.001). It was significantly decreased in higher BMI (P<0.05). Conclusion A retrospective study of factors affecting BAT activation in patients who underwent PET/CT scan for 2 years at the National Cancer Center was conducted. The results confirmed that BAT was significantly activated in normal-weight women under 50 years old who underwent PET/CT scan in weather with an outdoor temperature of less than 14.5℃. Based on this result, the patient applied to the factor can be identified in advance, and it is thought that it will help to reduce BAT activation through several studies in the future.

Determinants of Municipal Water Prices and Costs (지자체간 수돗물 판매가격과 생산비용 격차의 결정 요인 분석)

  • Kwon, Oh-Sang
    • Environmental and Resource Economics Review
    • /
    • v.18 no.4
    • /
    • pp.695-713
    • /
    • 2009
  • This study investigates the determinants of municipal water prices and costs in Korea. A panel data set of 164 municipalities for the period 2000~2007 is used for the study. Both random and fixed effect models with an appropriate set of instruments are applied to the data. Substantial differences in prices and costs among municipalities are observed. The study finds that prices and costs increase if the leakage rate is high, the quality of primary water is bad, and the municipality has to purchase primary water from K-water which is the single creation and management corporation of water resources facilities in Korea. Prices and costs decline if the size of consumer is large, the proportion of paying consumer is high, and the amount of subsidy from the central government is large.

  • PDF

The Effect of Old Korean's Interactions with their Children on Residential Mobility (자녀와의 교류가 노인 주거이동에 미치는 영향 분석)

  • Jinyhup Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.1-17
    • /
    • 2023
  • In Korea, the population size of the elderly is rapidly increasing, and housing for them is emerging as an important issue. In particular, Aging in Place (AIP) has steadily been presented as a direction of welfare for the elderly. This study empirically examines the effect of the interactions of the elderly with their children on residential mobility for older Koreans. To do so, this study employed random effect logistic regression models with the dataset of the 2008-2020 Korean Longitudinal Study of Aging. The findings are as follows. First, it was found that the interaction with their children increased the probability of residential mobility for older Koreans in both metropolitan areas and non-metropolitan areas. Second, as age increased, the interaction with their children tended to further promote residential mobility for older Koreans, but such effects varied depending on related variables. Third, it was confirmed that the possibility of further promoting residential mobility for older Koreans increased through the interaction effects of the variables associated with the interaction with their children. This study suggests policy implications for the residential mobility of older Koreans, i.e., whether the interactions with their children improve independent residential environments by enhancing housing stability, in terms of AIP.

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.

An Empirical Study on the "Effects of My Mom's Friend's Son" in the Job Search Process of Youths (청년층 직업탐색에서의 '엄친아효과'에 대한 실증연구)

  • Bai, Jin Han
    • KDI Journal of Economic Policy
    • /
    • v.36 no.3
    • /
    • pp.121-168
    • /
    • 2014
  • After analyzing and finding the explaining factors about the "Effect of My Mom's Friend's Son (MMFS Effect)" with online-surveyed data, we introduce this concept into the conventional job search theory to develop it further. We try to estimate its effects on the hazard rate of youth pre-employment duration with some proxy variables such as his/her parents' schooling, living with parents dummy, increasing rate of consumer price index representing the burdens of parents, monthly temporary/daily workers ratio, relative ratio of quarterly 90th percentile urban household income, monthly average wage differentials between the workers of large and small firms, etc. The results confirm us the fact that so called "MMFS Effect" has been effective enough and strengthened up to recently. The conventional job search theory should be extended to be able to introduce the influencing effects of other person's success, for instance MMFS's success, on the job search behavior of youths, too.

  • PDF

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.