• Title/Summary/Keyword: 확률적 학습

Search Result 509, Processing Time 0.025 seconds

Learning Probabilistic Graph Models for Extracting Topic Words in a Collection of Text Documents (텍스트 문서의 주제어 추출을 위한 확률적 그래프 모델의 학습)

  • 신형주;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.265-267
    • /
    • 2000
  • 본 논문에서는 텍스트 문서의 주제어를 추출하고 문서를 주제별로 분류하기 위해 확률적 그래프 모델을 사용하는 방법을 제안하였다. 텍스트 문서 데이터를 문서와 단어의 쌍으로(dyadic)표현하여 확률적 생성 모델을 학습하였다. 확률적 그래프 모델의 학습에는 정의된 likelihood를 최대화하기 위한 EM(Expected Maximization)알고리즘을 사용하였다. TREC-8 AdHoc 텍스트 에이터에 대하여 학습된 확률 그래프 모델의 성능을 실험적으로 평가하였다. 이로부터 찾아 낸 문서에 대한 주제어가 사람이 제시한 주제어와 유사한 지와, 사람이 각 주제에 대해 분류한 문서가 이 확률모델로부터의 분류와 유사한 지를 실험적으로 검토하였다.

  • PDF

초등학교 확률 학습 프로그램 개발과 적용에 관한 사례 연구 - 초등학교 6학년을 대상으로 -

  • Lee, So-Yeon;Kim, Won-Gyeong
    • Communications of Mathematical Education
    • /
    • v.11
    • /
    • pp.127-144
    • /
    • 2001
  • 본 연구는 확률의 다양한 의미를 반영한 초등학교 확률 학습 프로그램을 개발하고, 개발된 프로그램의 적용 가능성을 알아보는데 목적을 두고 있다. 먼저 확률의 다양한 의미를 반영한 초등학교 확률 학습프로그램을 개발하기 위하여, 프로그램의 기본 방향을 설정하고, 확률의 다양한 의미를 반영하기 위한 교수 방법을 마련하였다. 개발된 프로그램은 초등학교 6학년 한 단원 분량인 7차시로 이루어져 있다. 다음으로 프로그램 시행 전에 실시한 검사에서 확률적 사고 수준이 상 ${\cdot}$${\cdot}$ 하인 것으로 나타난 세 명의 학생을 연구 대상으로 개발된 프로그램을 시행하였다. 프로그램 적용 전 ${\cdot}$ 후에 실시한 지필 평가와 비디오 카메라로 녹음한 수업 내용과 학생들의 학습지를 검토하여 프로그램 적용 전, 1${\sim}$7 각 차시 후, 프로그램 적용 후의 시기로 나누어 분석한 결과, 세 학생 모두 확률적 사고 수준이 가장 높은 수준인 4수준으로 발전하였다. 본 연구의 결과, 확률을 이론적 의미 뿐 아니라 경험적 ${\cdot}$ 통계적 의미로 접근하면 초등학교 학생들도 확률 개념을 학습할 수 있었다. 따라서 확률을 다양한 관점으로 접근한다면, 초등학교에서도 독립성, 조건부 확률 같은 개념을 유의미하게 학습할 수 있을 것이다.

  • PDF

Theoretical Analysis on the Variance Learning Algorithm (분산학습알고리듬의 이론적 분석)

  • 조영빈;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.141-150
    • /
    • 1997
  • 분산은 확률모델을 표현하는 유용한 변수중 하나이다. 입력변수에 대한 함수로 표현되는 조건부 분산을 학습하는 신경회로망에 대한 많은 연구가 있어왔다. VALEAN이라는 신경회로망 역시 이러한 많은 연구중 하나인데 이것은 기본적으로 feedforward 다층 퍼셉트론 구조를 가지며 새롭게 제시된 에너지 함수를 사용하고 있다. 이 논문에서는 이 에너지 모델에 의해 결정되는 피드백에러(델타)가 신경망의 transient, steady state에서 미치는 영향을 다루었다. 과도 상태 분석에서는 델타와 수렴성, 안정성에 관한 내용을 다루고 모의 실험을 하였으며 정상 상태 분석에서는 신경회로망의 정상상태 에러의 크기와 델타의 크기사이의 상관관계에 대하여 다루었다. 학습 알고 리듬이 확률적이므로 정상상태 역시 확률적인 상태를 나타낸다. 따라서 델타의 크기에 따른 정상 상태 에러의 최대치는 확률적인 모델을 가지게 된다. 여기서는 이 확률 관계를 분석적으로 규명하고 이에 따라 원하는 신뢰도로 정상 상태 에러를 제어하기 위해 필요한 델타의 크기를 예측할 수 있는 이론적 배경을 마련하게 된다.

  • PDF

Adaptation Methods for a Probabilistic Fuzzy Rule-based Learning System (확률적 퍼지 룰 기반 학습 시스템의 적응 방법)

  • Lee, Hyeong-Uk;Byeon, Jeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.223-226
    • /
    • 2007
  • 지식 발견 (knowledge discovery)의 관점에서, 단기간 동안 취득된 데이터 패턴을 학습하고자 하는 경우 데이터에 비일관적인(inconsistent) 패턴이 포함되어 있다면 확률적 퍼지 룰(probabilistic fuzzy rule) 기반의 지식 표현 방법 및 적절한 학습 알고리즘을 이용하여 효과적으로 다룰 수 있다. 하지만 장기간 동안 지속적으로 얻어진 데이터 패턴을 다루고자 하는 경우, 데이터가 시변(time-varying) 특성을 가지고 있으면 기존에 추출된 지식을 변화된 데이터에 활용하기 어렵게 된다. 때문에 이러한 데이터를 다루는 학습 시스템에는 패턴의 변화에 맞추어 갈 수 있는 지속적인 적응력(adaptivity)이 요구된다. 본 논문에서는 이러한 적응성의 측면을 고려하여 평생 학습(life-long learning)의 관점 에 서 확률적 퍼지 룰 기반의 학습 시스템에 적용될 수 있는 두 가지 형태의 적응 방법에 대해서 설명하도록 한다.

  • PDF

자료 주도적(Data-Driven) 확률과 통계 학습에서의 그래픽 계산기의 활용

  • Park, Jae-Hui;Kim, Rae-Yeong;Gwon, O-Nam
    • Communications of Mathematical Education
    • /
    • v.10
    • /
    • pp.155-168
    • /
    • 2000
  • 현대 사회를 살아가는 교양을 갖춘 시민과 지혜로운 소비자가 되기 위해서 통계적 지식 및 확률적 지식은 필수적인 능력으로 간주된다. 자료 주도적 확률과 통계의 학습이란 학생들이 스스로 자료를 수집하고, 조직하고, 표현하고, 해석하는 직접적인 활동을 통해 확률과 통계의 개념, 원리의 터득은 물론 추론과 의사소통능력, 문제해결력 등을 기를 수 있는 학습형태로서, 이런 학습을 완수한 학생들은 수학의 유용성 및 실생활과의 연결성을 더 잘 이해할 수 있게 된다. 따라서, 모든 확률과 통계 수업에서는 실제자료를 학생들이 직접 다루는 활동이 수행되어야 하며, 이를 위한 테크놀로지의 적절한 사용이 병행되어야 한다. 이 글에서는 이러한 자료 주도적 확률과 통계의 학습의 예와 그에 병행되는 그래픽 계산기의 활용 방안을 제시하고자 한다.

  • PDF

A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control (확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크)

  • Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, we present a simple and fast supervised learning framework based on model predictive control so as to learn motion controllers for a physic-based character to track given example motions. The proposed framework is composed of two components: training data generation and offline learning. Given an example motion, the former component stochastically controls the character motion with an optimal controller while repeatedly updating the controller for tracking the example motion through model predictive control over a time window from the current state of the character to a near future state. The repeated update of the optimal controller and the stochastic control make it possible to effectively explore various states that the character may have while mimicking the example motion and collect useful training data for supervised learning. Once all the training data is generated, the latter component normalizes the data to remove the disparity for magnitude and units inherent in the data and trains an artificial neural network with a simple architecture for a controller. The experimental results for walking and running motions demonstrate how effectively and fast the proposed framework produces physics-based motion controllers.

Gene Expression Data Analysis Using Bayesian Networks (베이지안망을 이용한 유전자 발현 테이터의 분석)

  • 황규백;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.301-303
    • /
    • 2001
  • 최근 DNA 칩 또는 마이크로어레이 기술의 발전으로 인해 한 세포 내의 수천 개의 유전자의 발현 정도를 동시에 측정할 수 있게 되었다. 이러한 마이크로어레이 데이터를 분석해서 암의 경과나 세포의 주기적 변화 등에 영향을 미치는 유전자들을 알아낼 수 있다. 본 논문에서는 베이지안망을 이용해서 마이크로어레이 데이터를 분석, 백혈병의 경과를 예측한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 각 유전자들간의 확률적 관계를 표현하는 그래프 모델로 각 유전자들간의 확률적 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 마이크로어레이 데이터에 대해서 학습된 베이지안망은 백혈병 경과 예측에 대해서 기존의 방법보다 뛰어난 성능을 보였다.

  • PDF

The Study on Using Spreadsheet in Probability and Statistics Area of High School (고등학교 확률 통계 영역에서 스프레드시트 활용에 대한 연구)

  • Lee, Jong-Hak
    • School Mathematics
    • /
    • v.13 no.3
    • /
    • pp.363-384
    • /
    • 2011
  • This study is based on the recognition that the school mathematics education should reinforce the heuristic and constructional aspects related with discoveries of mathematical rules and understanding of mathematical concepts from real world situations as well as the deductive and formal aspects emphasizing on mathematical contents precisely. The 11th grade students of one class from a city high school with average were chosen. They were given time to learn various functions of Excel in regular classes of "Information Society and Computer" subject. They don't have difficulty using cells, mathematical functions and statistical functions in spreadsheet. Experiment was performed for six weeks and there were two hours of classes in a week. Considering the results of this research, teaching materials using spreadsheets play an important role in helping students to experience probabilistic and statistical reasoning and construct mathematical thinking. This implies that teaching materials using spreadsheet provide students with an opportunity to interact with probabilistic and statistical situations by adopting engineering which can encourage students to observe and experience various aspects of real world in authentic situations.

  • PDF

Large-Scale Bayesian Genetic Network Learning for Pharmacogenomics (Pharmacogenomics를 위한 대규모 베이지안 유전자망 학습)

  • 황규백;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.139-141
    • /
    • 2001
  • Pharmacogenomics는 개인의 유전적 성향과 약물에 대한 반응간의 관계에 대해 연구하는 학문이다. 이를 위해 DNA microarray 데이터를 비롯한 대량의 생물학 데이터가 구축되고 있으며 이러한 대규모 데이터를 분석하기 위해서 기계학습과 데이터 마이닝의 여러 기법들이 이용되고 있다. 본 논문에서는 pharmacogenomics를 위한 생물학 데이터의 효율적인 분석 수단으로 베이지안망(Bayesian network)을 제시한다. 배이지안망은 다수의 변수들간의 확률적 관계를 표현하는 확률그래프모델(probabilistic graphical model)로 유전자 발현과 약물 반응 사이의 확률적 의존 관계를 분석하는데 적합하다. NC160 cell lines dataset으로부터 학습된 베이지안 유전자망(Bayesian genetic network)이 나타내는 관계는 생물학적 실험을 통해 검증된 실제 관계들을 다수 포함하며, 이는 배이지안 유전자망 분석을 통해 개략적인 유전자-유전자, 약물-약물, 유전자-약물 관계를 효율적으로 파악할 수 있음을 나타낸다.

  • PDF

Layered Object Detection using Gaussian Mixture Learning for Complex Environment (혼잡한 환경에서 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyeong;Kim, Heon-Gi;Jo, Seong-Won;Kim, Jae-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.435-438
    • /
    • 2007
  • 움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.

  • PDF