Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.681-684
/
2004
본 연구는 hitless-restart기능과 확률적인 예측을 할 수 있는 발전된 형태의 Hitless 라우터(Router) 설계를 제안한다. Hitless-restart기능이라 함은 라우터가 reset 혹은 shutdown이 되더라도 forwarding path와 네트워크 구조는 유지하는 것을 말한다. 그러나 현재 hitless-restart의 가장 큰 문제점은 라우터가 restart를 할 때를 대비하여 항상 active한 상태로 유지시켜야 한다는 것이다. 확률적 예측이 가능한 Hitless 라우터는 restart할 시점을 확률적으로 예측함으로써 라우터 시스템을 보다 효과적으로 운영할 수 있도록 한다. First Exceed Level이론은 라우터의 조건에 따라 restart가 필요한 시점을 확률 적으로 예측할 수 있도록 한다. 이러한 예측결과를 이용하여 우리는 라우터가 구조적인 한계를 넘어서기 전에 hitless-restart를 실시함으로써 라우터가 shutdown되는 것을 방지할 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.20-20
/
2015
최근 기후변화의 영향으로 전 세계적으로 홍수와 가뭄의 발생빈도가 증가하고 있다. 특히, 가뭄은 우리나라에서 겨울과 봄철을 중심으로 매년 발생되고 있다. 가뭄의 정확한 발생을 판단하기는 어려우나, 가뭄이 발생되면 그 진행속도는 홍수보다 느리기 때문에 초기에 가뭄의 발생가능성을 예측한다면 가뭄에 대한 피해를 줄일 수 있다. 따라서 최근 가뭄 예측에 대한 다양한 연구가 이루어지고 있다. 본 연구에서는 가뭄발생의 불확실성을 내포하기 위하여 Bayesian Network (BN) 모형과 SPI의 자기상관성을 바탕으로 가까운 미래의 가뭄 발생확률을 예측하는 방법을 제안하였다. BN은 변수들 간의 인과관계를 확률적으로 나타낼 수 있는 네트워크 모형으로, 자연현상에 대한 위험도 분석 및 의학 분야에서 질병추정을 위한 모형으로 활용되고 있다. 본 연구에서는 가까운 미래의 가뭄 예측을 위하여 APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 강우예측 결과로 도출한 미래 SPI 및 과거 강우량 자료로 구축한 SPI를 부모노드로, 예측 SPI를 자식노드로 BN을 구축하였다. BN의 각각의 노드를 Gaussian 확률분포모형으로 가정한 뒤, Likelihood weighting 방법으로 주변사후분포확률(Marginal posterior distribution)을 추정하여 미래의 SPI의 발생확률을 계산하였다. 2008년부터 2013년의 BN 가뭄 예측값과 MME 강우예측 결과로 도출한 SPI를 실제 관측 강우량으로 산정한 SPI와 비교하였으며, BN이 실제 관측결과에 가까운 결과가 도출되었다. 본 연구에서는 BN을 활용하여 가까운 미래의 가뭄 발생가능성을 확률적으로 나타낼 수 있는 방법을 제시하였으며, 그 결과 가뭄상태별 가뭄 발생확률이 산정되었다.
Dealing with uncertainty has been a critical issue in demographic and population forecasting since 1980. This study reviews methodological developments in demographic and population forecasting over the last several decades. First, this study reviews the important issue of the uncertainty surrounding demographic forecasts. Several limitations of the traditional scenario approach to dealing with uncertainty are also discussed. Second, in forecasting demographic processes such as mortality, fertility, and migration, three approaches of stochastic forecasting are identified and discussed: expert judgment, statistical modeling, and analysis of historical forecast errors. Finally, this study discusses the current issues and directions for future research in stochastic demographic forecasting.
Kwon, Minsung;Shin, Ji Yae;Jun, Kyung Soo;Kim, Tae-Woong
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.98-98
/
2016
본 연구에서는 유입량의 불확실성을 고려하여 미래 저수량을 확률론적으로 예측하였다. 월별 유입량을 표본으로 한 확률밀도함수를 핵밀도함수(kernel function)를 이용하여 추정하고, 추정된 확률분포로 월별 유입량을 모의 발생하였다. 모의 발생된 유입량을 통해 연속적인 조건부 확률을 산정하였고, 이의 누적확률분포(F(x))는 해당 저수량에 도달하지 못할 확률, 즉 실패확률을 의미하므로 1-F(x)로 해당 저수량 이상을 확보할 수 있는 확률을 산정하였다. 보령댐을 대상으로 분석한 결과 2016년 2월 말 저수량 27.8 백만$m^3$ 기준으로 3월부터 6월까지 정상용수공급환원 기준 저수량을 만족할 확률이 각각 2.3%, 12.5%, 24.2%, 33.5%로 나타났다. 지역적 가뭄에 대응하기 위해 하천유지용수 감량, 용수 대체공급, 자율 급수조정 및 금강-보령댐 도수로를 이용한 용수공급으로 20.6만$m^3/day$의 용수가 비축될 경우, 정상용수공급환원 기준 저수량을 만족할 확률이 10.2%, 40.3%, 73.8%, 78.7%로 용수비축의 효과가 크게 나타나는 것을 확인하였다. 저수량의 확률론적 예측을 통해 미래 저수량의 확률적 발생가능성을 추정할 수 있으며, 가뭄이 발생할 경우, 가뭄 대응효과를 정량적으로 나타낼 수 있어 가뭄 위험 상황 전달 및 용수공급조정 의사결정 시 활용할 수 있을 것으로 판단된다.
Korean Journal of Construction Engineering and Management
/
v.17
no.5
/
pp.13-21
/
2016
Insolvency of construction companies that play the role of main contractors can lead to clients' losses due to non-fulfillment of construction contracts, and it can have negative effects on the financial soundness of construction companies and suppliers. The construction industry has the cash flow financial characteristic of receiving a project and getting payment based on the progress of the construction. As such, insolvency during project progress can lead to financial losses, which is why the prediction of construction companies is so important. The prediction of insolvency of Korean construction companies are often made through the KMV model from the KMV (Kealhofer McQuown and Vasicek) Company developed in the U.S. during the early 90s, but this model is insufficient in predicting construction companies because it was developed based on credit risk assessment of general companies and banks. In addition, the predictive performance of KMV value's insolvency probability is continuously being questioned due to lack of number of analyzed companies and data. Therefore, in order to resolve such issues, the Bayesian Probabilistic Approach is to be combined with the existing insolvency predictive probability model. This is because if the Prior Probability of Bayesian statistics can be appropriately predicted, reliable Posterior Probability can be predicted through ensured conditionality on the evidence despite the lack of data. Thus, this study is to measure the Expected Default Frequency (EDF) by utilizing the Bayesian Probabilistic Approach with the existing insolvency predictive probability model and predict the accuracy by comparing the result with the EDF of the existing model.
Proceedings of the Korean Information Science Society Conference
/
2006.10a
/
pp.500-504
/
2006
본 논문에서 기술하는 연구는 한국종합주가지수(KOSPI)의 장기적 변동 경향에 대한 확률적 예측 시스템을 제안한다. 제안된 방법론은 이미 단백질 상호작용 예측 시스템과 스트레스 확률 예측 시스템 등에 적용되어 유효성이 입증된 방법으로, 이미 알려진 데이터를 바탕으로 다양한 요인들의 가능한 모든 조합에 대한 경우의 수를 고려한 학습 결과에 기반하여 새로이 주어진 대상의 요인들을 분석해서 학습시 사용된 특정 군(class)에 속할지의 여부를 확률적으로 나타내준다. 이 방법론을 구현하기 위해 실제 과거 주가지수 데이터를 수집하여 CI(Combination Interrelation)행렬을 구현하였으며, 현재 진행중인 검증작업에 대해서도 기술하였다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.71-71
/
2012
현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.
As the uncertainty of precipitation increases due to climate change, seasonal forecasting and the use of weather forecasts become essential for efficient water resources management. In this study, the categorical probabilistic long-term forecasts implemented by KMA (Korea Meteorological Administration) since June 2014 was evaluated using assessment indicators of Hit Rate, Reliability Diagram, and Relative Operating Curve (ROC) and a technique for obtaining quantitative precipitation estimates based on probabilistic forecasts was proposed. The probabilistic long-term forecasts showed its maximum predictability of 48% and the quantified precipitation estimates were closely matched with actual observations; maximum correlation coefficient (R) in predictability evaluation for 100% accurate and actual weather forecasts were 0.98 and 0.71, respectively. A precipitation quantification approach utilizing probabilistic forecasts proposed in this study is expected to enable water management considering the uncertainty of precipitation. This method is also expected to be a useful tool for supporting decision-making in the long-term planning for water resources management and reservoir operations.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1027-1031
/
2008
본 연구는 한반도 영역을 대상으로 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 RDAPS 모형, AWS, 상층기상관측(upper-air sounding)의 자료를 이용하였다. 또한 수치예보자료를 범주적 예측확률로 변환하고 인공신경망기법(ANN)을 이용하여 강수발생확률의 예측정확성을 향상시키는데 있다. 신경망의 예측인자로 사용된 대기변수는 500/ 750/ 1000hpa에서의 지위고도, 500-1000hpa에서의 층후(thickness), 500hpa에서의 X와 Y의 바람성분, 750hpa에서의 X와 Y의 바람성분, 표면풍속, 500/ 750hpa/ 표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도이며, 예측변수로는 강수발생확률로 선택하였다. 강우는 다양한 대기변수들의 비선형 조합으로 발생되기 때문에 예측인자와 예측변수 사이의 복잡한 비선형성을 고려하는데 유용한 인공신경망을 사용하였다. 신경망의 구조는 전방향 다층퍼셉트론으로 구성하였으며 역전파알고리즘을 학습방법으로 사용하였다. 강수예측성과의 질을 평가하기 위해서 $2{\times}2$ 분할표를 이용하여 Hit rate, Threat score, Probability of detection, Kuipers Skill Score를 사용하였으며, 신경망 학습후의 강수발생확률은 학습전의 강수발생확률에 비하여 한반도영역에서 평균적으로 Kuipers Skill Score가 0.2231에서 0.4293로 92.39% 상승하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.301-303
/
2001
최근 DNA 칩 또는 마이크로어레이 기술의 발전으로 인해 한 세포 내의 수천 개의 유전자의 발현 정도를 동시에 측정할 수 있게 되었다. 이러한 마이크로어레이 데이터를 분석해서 암의 경과나 세포의 주기적 변화 등에 영향을 미치는 유전자들을 알아낼 수 있다. 본 논문에서는 베이지안망을 이용해서 마이크로어레이 데이터를 분석, 백혈병의 경과를 예측한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 각 유전자들간의 확률적 관계를 표현하는 그래프 모델로 각 유전자들간의 확률적 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 마이크로어레이 데이터에 대해서 학습된 베이지안망은 백혈병 경과 예측에 대해서 기존의 방법보다 뛰어난 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.