The Journal of the Korea institute of electronic communication sciences
/
v.5
no.5
/
pp.435-443
/
2010
When testing systems that incorporate probabilistic behavior, it is necessary to apply test inputs a number of times in order to give a test verdict. Interval estimation can be used to assert the correctness of probabilities where the selection of confidence interval is one of the important issues for quality of testing. The Wald interval has been widely accepted for interval estimation. In this paper, we compare the Wald interval and the Agresti-Coull interval for various sizes of samples. The comparison is carried out based on the test pass probability of correct implementations and the test fail probability of incorrect implementations when these confidence intervals are used for probability testing. We consider two-sided confidence intervals to check if the probability is close to a given value. Also one-sided confidence intervals are considered in the comparison in order to check if the probability is not less than a given value. When testing probabilities using two-sided confidence intervals, we recommend the Agresti-Coull interval. For one-sided confidence intervals, the Agresti-Coull interval is recommended when the size of samples is large while either one of two confidence intervals can be used for small size samples.
Proceedings of the Korean Statistical Society Conference
/
2002.11a
/
pp.227-230
/
2002
표본의 크기가 작을 경우에 이항분포의 모수에 대한 신뢰구간을 구하는 대표적인 방법으로는 Clopper-Pearson 방법과 Blyth-Still 방법이 있다. Clopper-Pearson 방법에 의한 신뢰구간은 이항 모수가 포함되는 커버리지 확률이 목표로 하는 신뢰수준보다 상대적으로 크다는 문제점이 있다. Blyth-Still 방법은 이러한 문제점을 개선시켰다. 그러나, Blyth-Still에 의해서 표로 보고된 신뢰구간을 적용할 경우 표본의 크기와 이항 모수의 값에 따라서 커버리지 확률이 목표하는 신뢰수준보다 작은 경우가 발생한다. 그러나, 이는 Blyth-Still 방법 자체의 문제점이 아니며 단지 보고된 표의 유의한 소수점 자릿수와 관계가 있다. 본 논문은 Blyth-Still 방법에 의한 좀 더 정확한 신뢰구간을 제시한다.
Several confidence interval estimates for the difference of two binomial proportions were introduced. Bootstrap confidence interval is also suggested. We examined the over estimation property of approximate intervals and under estimation trend of exact intervals for the difference of proportions. We compared these confidence intervals based on the average coverage probability, expected width and skewness measure. Particularly actual coverage probability were calculated by using the prior distribution of parameters. Monte Carlo simulation for small sample size is conducted. Some interesting contour plots of average coverage probability and marginal plots for several interval estimates are presented.
Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.
Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.
The Wald confidence interval has been considered as a standard method for the difference of proportions. However, the erratic behavior of the coverage probability of the Wald confidence interval is recognized in various literatures. Various alternatives have been proposed. Among them, Agresti-Caffo confidence interval has gained the reputation because of its simplicity and fairly good performance in terms of coverage probability. It is known however, that the Agresti-Caffo confidence interval is conservative. In this note, a confidence interval is developed using the weighted Polya posterior which was employed to obtain a confidence interval for the binomial proportion in Lee(2005). The resulting confidence interval is simple and effective in various respects such as the closeness of the average coverage probability to the nominal confidence level, the average expected length and the mean absolute error of the coverage probability. Practically it can be used for the interval estimation of the difference of proportions for any sample sizes and parameter values.
We consider use of Bootstrap calibration in the problem of setting a confidence interval for a linear combination of variance components. Based on the the modified large sample(MLS) method by Graybill and Wang(1980), Bootstrap Calibration is applied to improve the coverage probability of the MLS confidence bound when the experiment is balanced and coefficients of a linear combination are positive. Performance of the proposed confidence bound in small sample is investigated by simulation studies.
Communications for Statistical Applications and Methods
/
v.18
no.5
/
pp.615-623
/
2011
Several methods are used in interval estimation for binomial proportion; however the coverage probabilities of most confidence intervals depart from the confidence level when the binomial population proportion closes to 0 or 1 due to the extreme value. Vollset (1993), Agresti and Coull (1998), Newcombe (1998), and Brown et al. (2001) suggested methods to adjust the extreme value. This paper discusses the influence of extreme value in a binomial confidence interval through the numerical comparison of 6 confidence intervals.
양방향 2차로 도로는 우리나라 전체 포장도로 연자의 84%를 차지하고 있다. 양방향 2차로 도로의 효율성 및 교통류의 운영상태를 파악하기 위한 서비스 수준 척도로 지체시간의 백분율이 많이 사용되고 있다. 지체시간의 산정은 특정 도로 설계구간을 추원금지구간으로 설계할 것이지, 예산을 더 투자하여 선형을 개선함으로써 추원가능 구간으로 설계할 것인지에 대한 판단 기준을 제시할 수 있기 때문에 도로설계과정에 있어서 매우 중요하다. 본 연구에서는 저속차량의 확률적 분포를 고려하여 추원금지구간에서 발생하는 지체시간을 산정할 수 있는 모형을 제시하였다. 모형식이 기존에 확률적 분포를 고려하여 추월금지구간에서 발생하는 지체시간을 산정할 수 있는 모형을 제시하였다. 모형식이 기존에 개발된 거시적 수학적 모형에 비해 비교적 단순하고 입력변수도 수집이 용이한 점이 특징이라 할 수 있다. 모형의 신뢰성을 현장데이터를 이용하여 검증한 결과, 모혀으이 예측값이 근사적으로 츠덩한 실제 지체시간을 포함하는 긍정적인 결과를 도출하였다. 그러나 모형의 예측값 범위가 넓어 실용적인 MOE로 사용하기에 다소 무리가 있을 것으로 판단되므로, 개략적인 평가기준으로 모형이 예측한 값의 평균값을 보정하여 사용할 것을 제안한다. 모형의 신뢰성을 높이기 위해서는 본 연구에서 가정한 확률분포식에 대한 추가적인 검증이 필요할 것으로 판단된다. 본 연구는 실제 상황을 표현하는데 있어 확률적 개념의 도입과 이러한 새로운 접근방법의 기초를 마련한 측면에서 의미를 갖는다. 또한, 양방향 2차로 도로에서의 지체시간은 실제 소요시간과 자유운행시 즉 다른 차량의 영향을 받지 않았을 때의 속도 및 운영시간과의 차이로 정의한 바, 실제 지체시간을 현장자료를 통해 구하기란 현실적으로 불가능하므로, 본 연구에서는 이러한 제약점을 극복할 수 있는 근사적인 지체시간을 계산하는 방법을 제시한 점에서 의미를 갖을 수 있다.
Proceedings of the Korean Statistical Society Conference
/
2000.11a
/
pp.39-43
/
2000
분산 추정 및 신뢰구간 추정의 한 방법으로 널리 쓰이고 있는 붓스트랩 방법을 복합표본에 적용하는 방법에 대해 알아보았다. 복합 표본은 유한 모집단에서 추출되고 추출확률이 다르기 때문에 i.i.d. 표본에 기초하여 개발된 전통적인 붓스트랩 방법을 직접 적용하면 추론의 오류가 발생할 수 있다. 본 연구에서는 복원 확률비례표본과 랜덤그룹표본에 붓스트랩을 적용하는 방법을 알아보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.