• Title/Summary/Keyword: 확률적 불확실성

Search Result 564, Processing Time 0.029 seconds

Study on the Characteristics of Infinite Slope Failures by Probabilistic Seepage Analysis (확률론적 침투해석을 통한 무한사면 파괴의 특성 연구)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.5-18
    • /
    • 2014
  • Many regions around the world are vulnerable to rainfall-induced slope failures. A variety of methods have been proposed for revealing the mechanism of slope failure initiation. Current analysis methods, however, do not consider the effects of non-homogeneous soil profiles and variable hydraulic responses on rainfall-induced slope failures. In this study, probabilistic stability analyses were conducted for weathered residual soil slopes with different soil thickness overlying impermeable bedrock to study the rainfall-induced failure mechanisms depending on the soil thickness. A series of seepage and stability analyses of an infinite slope based on one-dimensional random fields were performed to consider the effects of uncertainty due to the spatial heterogeneity of hydraulic conductivity on the failure of unsaturated slopes due to rainfall infiltration. The results showed that a probabilistic framework can be used to efficiently consider various failure patterns caused by spatial variability of hydraulic conductivity in rainfall infiltration assessment for a infinite slope.

Estimation of future climate change factor based on CMIP6 data (CMIP6 자료 기반 미래 기후변화 할증률 산정)

  • Beak, Dojin;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.308-308
    • /
    • 2023
  • 자연재해대책법 제 16조 6에 따라 기후변화로 인한 방재성능목표의 영향을 고려하기 위해 방재성능가이드라인을 설정하여 운영하고 있다. 2017년 공표된 기후변화를 고려한 방재성능목표 강우량의 단기 할증률은 CMIP5 자료를 기반으로 기본 5%, 관심 8%, 주의 10%의 할증률로 구분되어 적용되고 있다. 그러나, 미래 기후변화 시나리오에 따르면 확률강우량이 늘어나는 지역도 있지만, 감소될 것으로 예상되는 지역도 존재한다. 따라서, 모든 지역을 3개의 구간으로 나누어 증가 할증률을 적용하는 것에 대한 검토가 필요하다. 본 연구에서는 CMIP6 기후변화 자료를 시단위로 다운스케일링한 시계열을 이용하여 미래 기후변화로 인한 방재성능목표의 할증률을 산정하고, 각 할증률에 기반한 구간을 상세화하고자 한다. 구체적으로, 현재 기상청에서 제공하는 일단위 기후변화 데이터베이스와, CMIP6에서 제공하는 일단위 기후변화 자료를 구축하고, 분석하였다. 이후 구축된 일단위 자료를 시단위 자료로 Downscaling한 후, 각 이산화탄소 배출 시나리오인 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 대해 앙상블 시계열을 생성하고, 다양한 기후변화의 불확실성을 적절하게 정량화 할 예정이다. 그중에서 방재성능목표와 가장 밀접하다고 생각되는 변수들(연강우량, 8월강우량, 연최대강우량, 30년빈도 확률강우량 등)을 CCF(Cross Correlation Function), ACC(Auto Correlation Function)방법 등을 통해 분석하여 최적의 변수들을 찾고, 그 값들의 앙상블 평균을 통해 안정된 방재성능목표 기후변화 할증률 값을 산정할 예정이다. 169개 지역의 시·군 단위의 티센망과, 238개 지역의 시·군·구 단위의 티센망을 구축하고, 기상청 ASOS(Automated Synoptic Observing System)의 69개 기상관측소 강우관측자료와 AWS(Automatic Weather System)의 419개 기상관측소를 활용하여 지역별 미래 기후변화를 고려한 비선형적 할증률를 제시할 것이다.

  • PDF

Applicability of Robust Decision Making for a Water Supply Planning under Climate Change Uncertainty (기후변화 불확실성하의 용수공급계획을 위한 로버스트 의사결정의 적용)

  • Kang, Noel;Kim, Young-Oh;Jung, Eun-Sung;Park, Junehyeong
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 2013
  • This study examined the applicability of robust decision making (RDM) over standard decision making (SDM) by comparing each result of water supply planning under climate change uncertainties for a Korean dam case. RDM determines the rank of alternatives using the regret criterion which derives less fluctuating alternatives under the risk level regardless of scenarios. RDM and SDM methods were applied to assess hypothetic scenarios of water supply planning for the Andong dam and Imha dam basins. After generating various climate change scenarios and six assumed alternatives, the rank of alternatives was estimated by RDM and SDM respectively. As a result, the average difference in the rank of alternatives between RDM and SDM methods is 0.33~1.33 even though the same scenarios and alternatives were used to be ranked by both of RDM and SDM. This study has significance in terms of an attempt to assess a new approach to decision making for responding to climate change uncertainties in Korea. The effectiveness of RDM under more various conditions should be verified in the future.

Advanced Intensity Measures for Probabilistic Seismic Demand Model of Nonstructural Components Considering the Effects of Earthquake (지진에 의한 영향을 고려한 비구조물 확률론적 내진응답모델링을 위한 향상된 지진강도)

  • Hur, Ji-eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • Nonstructural components, such as electrical equipment, have critical roles in the proper functionality of various infrastructure systems. Some of these devices in certain facilities should operate even under strong seismic shaking. However, it is challenging to define each mechanical and operational failure and determine system failure probabilities under seismic shaking due to the uncertainties in earthquake excitations and the diversity of electrical equipment, among other factors. Therefore, it is necessary to develop effective and practical probabilistic models for performance assessment of electrical equipment considering variations in equipment features and earthquakes. This study will enhance the understanding of the effect of rocking behavior on nonstructural equipment, and linear-to-nonlinear behavior of restrainers. In addition, this study will generate probabilistic seismic demand models of rigid equipment for a set of conventional and novel intensity measures.

Statistical Calibration and Validation of Mathematical Model to Predict Motion of Paper Helicopter (종이 헬리콥터 낙하해석모델의 통계적 교정 및 검증)

  • Kim, Gil Young;Yoo, Sung Bum;Kim, Dong Young;Kim, Dong Seong;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.751-758
    • /
    • 2015
  • Mathematical models are actively used to reduce the experimental expenses required to understand physical phenomena. However, they are different from real phenomena because of assumptions or uncertain parameters. In this study, we present a calibration and validation method using a paper helicopter and statistical methods to quantify the uncertainty. The data from the experiment using three nominally identical paper helicopters consist of different groups, and are used to calibrate the drag coefficient, which is an unknown input parameter in both analytical models. We predict the predicted fall time data using probability distributions. We validate the analysis models by comparing the predicted distribution and the experimental data distribution. Moreover, we quantify the uncertainty using the Markov Chain Monte Carlo method. In addition, we compare the manufacturing error and experimental error obtained from the fall-time data using Analysis of Variance. As a result, all of the paper helicopters are treated as one identical model.

Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves (취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.41-54
    • /
    • 2021
  • In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability was performed to evaluate the probabilistic seepage behavior. Fragility curves were developed by calculating the failure probability conditional on the occurrence of a given water level from the probability distribution obtained from Monte Carlo simulations. The fragility curve was prepared for the flow quantities such as flow rate through foundation soil, uplift force on the base of structure, and exit gradient in downstream to examine the reliability of the water retaining structure and the foundation soil. From the fragility curves, the effect of the location of cutoff wall on the reliability of water retaining structure and foundation soil according to the rise in water level was studied.

Reliability Analysis Method for Concrete Containment Structures (콘크리트 차폐(遮蔽) 구조물(構造物)의 신뢰성(信賴性) 해석방법(解析方法))

  • Han, Bong Koo;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 1990
  • The safety of concrete nuclear containment structures should be secured against all kinds of loading due to various natural disasters or extraordinary accidental loads. The current design criteria of concrete containment structures are not based on the reliabillty-based design concept but rely on the conventional design concept. In this paper, a probabillty-based reliability analysis were proposed based on a FEM-based random vibration analysis and serviceability limit state of structures. The limit state model defined for the study is a serviceability limit state in terms of the more realistic crack failure that might cause the emission of radioactive materials, and the results are compared with those of the strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporation the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the refernces were adapted to the situation of Korea, and especially in the case of earthquake, the design earthquake was assessed based on the available re ports on probabilistic description of earthquake ground acceleration in the Korea peninsula.

  • PDF

Drought Frequency Analysis Using Cluster Analysis and Bivariate Probability Distribution (군집분석과 이변량 확률분포를 이용한 가뭄빈도해석)

  • Yoo, Ji Young;Kim, Tae-Woong;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.599-606
    • /
    • 2010
  • Due to the short period of precipitation data in Korea, the uncertainty of drought analysis is inevitable from a point frequency analysis. So it is desired to introduce a regional drought frequency analysis. This study first extracted drought characteristics from 3-month and 12-month moving average rainfalls which represent short and long-term droughts, respectively. Then, the homogeneous regions were distinguished by performing a principal component analysis and cluster analysis. The Korean peninsula was classified into five regions based on drought characteristics. Finally, this study applied the bivariate frequency analysis using a kernel density function to quantify the regionalized drought characteristics. Based on the bivariate drought frequency curves, the drought severities of five regions were evaluated for durations of 2, 5, 10, and 20 months, and return periods of 5, 10, 20, 50, and 100 years. As a result, the largest severity of drought was occurred in the Lower Geum River basin, in the Youngsan River basin, and over in the southern coast of Korea.

Application of Real Option based Life Cycle Cost Analysis for Reflecting Operational Flexibility in Solar Heating Systems (실물옵션 기반의 LCC분석을 통한 태양열난방시스템의 운영유연성 반영 방안)

  • Choi, Ju-Yeong;Kim, Hyeong-Bin;Son, Myung-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.70-79
    • /
    • 2015
  • With the rise of the interest in a renewable system, the importance of the Life Cycle Cost Analysis(LCCA), an economic evaluation tool, has been increasing. However, there is an inevitable gap between a real cost and an estimation from LCCA because of the uncertainty of the external environment in real world. As the input variables in an analysis, such as a real discount rate and an energy cost, ares subject to change as time goes by, strategic decision on the current operating system is made depending on the real cost. Current economic evaluation approaches have treated only the fluctuation of input variables without consideration of the flexibility in operation, which has consequently led to the impairment on the reliability of LCCA. Therefore, new approach needs to be proposed to consider both the uncertainty of input variables and operational flexibility. To address this issue, the application of the Real Option to LCCA is presented in this study. Through a case analysis of LCCA of a solar heating system, the limits and current status of LCCA are identified. As a result, quantitative presentation of strategic decisions has been added in the new approach to implement the traditional approach.

Development of Structural Reliability Analysis Platform of FERUM-MIDAS for Reliability-Based Safety Evaluation of Bridges (신뢰도 기반 교량 안전성 평가를 위한 구조신뢰성 해석 플랫폼 FERUM-MIDAS의 개발)

  • Lee, Seungjun;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.884-891
    • /
    • 2020
  • The collapse of bridges can cause massive casualties and economic losses. Therefore, it is thus essential to evaluate the structural safety of bridges. For this task, structural reliability analysis, considering various bridge-related uncertainty factors, is often used. This paper proposes a new computational platform to perform structural reliability analysis for bridges and evaluate their structural safety under various loading conditions. For this purpose, a software package of reliability analysis, Finite Element Reliability Using MATLAB (FERUM), was integrated with MIDAS/CIVIL, which is a widely-used commercial software package specialized for bridges. Furthermore, a graphical user interface (GUI) control module has been added to FERUM to overcome the limitations of software operation. In this study, the proposed platform was applied to a simple frame structure, and the analysis results of the FORM (First-Order Reliability Method) and MCS (Monte Carlo simulation), which are representative reliability analysis methods, were compared. The proposed platform was verified by confirming that the calculated failure probability difference was less than 5%. In addition, the structural safety of a pre-stressed concrete (PSC) bridge was evaluated considering the KL-510 vehicle model. The proposed new structural reliability analysis platform is expected to enable an effective reliability-based safety evaluation of bridges.