• Title/Summary/Keyword: 확률적 모델

Search Result 1,488, Processing Time 0.035 seconds

Supply Chain Contract Model with Vague Demand Information (모호한 수요정보에서의 공급망 계약 모델)

  • Kim, Gi-Tae;Park, Jun-Cheul
    • The Journal of Information Systems
    • /
    • v.21 no.2
    • /
    • pp.181-196
    • /
    • 2012
  • 본 논문은 고객의 수요정보에 대해 모호한 정보를 가진 공급자와 구매자 사이의 공급망 계약에 관한 것을 다루고 있는 것으로, 고객 수요에 대한 불확실성은 확률적 프로그래밍 모델에서 공식적으로 다루어져왔다. 확률적 프로그램의 한 가지 핵심적인 가정은 널리 알려져 있는바와 같이 수요에 대한 확률분포가 알려져 있다는 것이다. 그럼에도 불구하고 만약 수요에 대한 정보가 모호하거나 정확하지 않다면 수요에 대한 확률분포가 정확하지 않다는 점이다. 이런 상황에서 퍼지 이론은 수요정보를 나타내는데 유용하다고 할수 있다. 본 논문은 퍼지 랜덤수요변수들을 분산시스템의 공급망 계약에서 다루고 있다. 이 계약은 구매자의 주문량을 조정하는 옵션을 이용한다. 본 연구는 퍼지 랜덤 변수들을 GMIR(Graded Mean Integration Representation)을 이용하여, 알고리즘을 통해 구현함으로써 실증적 결과 값을 제시하고 미래 연구의 확장 가능성을 제시하고 있다.

Probability-based IoT management model using blockchain to expand multilayered networks (블록체인을 이용하여 다층 네트워크를 확장한 확률 기반의 IoT 관리 모델)

  • Jeong, Yoon-Su
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.33-39
    • /
    • 2020
  • Interest in 5G communication security has been growing recently amid growing expectations for 5G technology with faster speed and stability than LTE. However, 5G has so far included disparate areas, so it has not yet fully supported the issues of security. This paper proposes a blockchain-based IoT management model in order to efficiently provide the authentication of users using IoT in 5G In order to efficiently fuse the authentication of IoT users with probabilistic theory and physical structure, the proposed model uses two random keys in reverse direction at different layers so that two-way authentication is achieved by the managers of layers and layers. The proposed model applied blockchain between grouped IoT devices by assigning weights to layer information of IoT information after certification of IoT users in 5G environment is stratified on a probabilistic basis. In particular, the proposed model has better functions than the existing blockchain because it divides the IoT network into layered, multi-layered networks.

Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyung;Cho, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.387-391
    • /
    • 2008
  • For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.

A Study on the Construction of the Stochastic Model for the Computer Systems Performance Evaluation (확률적 컴퓨터 성능평가 모델설정에 관한 연구)

  • 김상복;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.1
    • /
    • pp.58-64
    • /
    • 1989
  • This paper constructs a stochastic model for computer performance evaluation which has several parameters such as the kinds of instruction mix of benchmark programs, distribution and frequency of instruction mix. It shows, by applying the model to the performance evaluation of the Intel 8086/8088 microprocessor, that this model could be utilited not only for performance evaluation of existing computer systems but also for estimation of nonexisting systems.

  • PDF

소형 해상 부유체의 위기허용수준 결정을 위한 최적의 누적확률분포함수 선정에 관한 연구

  • Im, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.474-476
    • /
    • 2013
  • 위기허용수준(RAC)은 시스템의 안전성 평가를 위한 확률적인 기준으로, 소형 해상 부유체의 롤, 피치, 히브 등 세 가지 동적운동의 위험수준 평가에 적용할 수 있다. 부유체의 동적운동 값들은 모델을 통해서 획득한 후, 이에 관한 누적확률분포함수를 추론하여 상대적인 위기수준을 결정하게 된다. 이 연구는 모델에서 획득한 세가지 동적운동에 대한 최적의 누적확률분포함수 선정에 관한 것이 목적이다. Exponential, Extreme Value, Gamma, Lognormal, Normal, Poisson 등 6가지 대표적인 누적확률분포함수를 세가지 동적운동에 적용하여 평가한 결과, 롤과 히브 운동의 경우는 Beta 누적분포함수가 최적임을 나타냈고, 피치 운동의 경우는 Gamma 누적분포함수로 대표하는 것이 최적임을 나타냈다. 아울러 향후 본 연구 결과의 적용방법에 대해서도 검토하였다.

  • PDF

Syllable-based Probabilistic Models for Korean Morphological Analysis (한국어 형태소 분석을 위한 음절 단위 확률 모델)

  • Shim, Kwangseob
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.642-651
    • /
    • 2014
  • This paper proposes three probabilistic models for syllable-based Korean morphological analysis, and presents the performance of proposed probabilistic models. Probabilities for the models are acquired from POS-tagged corpus. The result of 10-fold cross-validation experiments shows that 98.3% answer inclusion rate is achieved when trained with Sejong POS-tagged corpus of 10 million eojeols. In our models, POS tags are assigned to each syllable before spelling recovery and morpheme generation, which enables more efficient morphological analysis than the previous probabilistic models where spelling recovery is performed at the first stage. This efficiency gains the speed-up of morphological analysis. Experiments show that morphological analysis is performed at the rate of 147K eojeols per second, which is almost 174 times faster than the previous probabilistic models for Korean morphology.

Text-Independent Speaker Verification Based on MLP Cohort Model (MLP 군집 모델에 기반한 어구독립 화자증명)

  • 이태승;최호진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.434-436
    • /
    • 2000
  • 본 논문에서는 기존의 확률적 화자군집 모델을 MLP(multi-layer perceptron)로 구현하는 방법과 원형 화자군집 모델이 갖는 문제를 해결할 수정 모델을 제시한다. 화자군집 모델은 화자등록 시간에 민감한 실용 환경에서 중요한 의미를 지닌다. 본 연구에서 사용한 인식단위는 여러 음소계열에서 지속적인 부분을 추출한 지속음이므로 화자등록과 증명 단계에서 특정한 어구에 한정되지 않는 어구독립 방식을 채택한다.

  • PDF

Assessment of Fragility Curve for Earthquake in Railway Bridge (기존 철도교량의 지진에 대한 취약도 곡선 산정)

  • Kim, Dae-Ho;Sun, Chang-Ho;Kim, Ick-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.101-104
    • /
    • 2008
  • Recently, the serious damage by earthquakes is increased around the world. SOC fo city is established to minimize the loss of lives and assets by earthquakes, which an objective standard is required. Generally, bridges damage by earthquakes occurred the inelastic hinge under the column. Nonlinear element model of inelastic hinge have been used to Bilinear model, but Takeda model for material characterization of concrete is a little. In this study, railway bridge was performed seismic fragility analysis for Takeda model and Bilinear model comparatively. This analysis shows that damage probability of Takeda model is larger than Bilinear model. And analysis of Takeda model in longitudinal direction and transverse direction are different. Therefore developed analysis for concrete column of bridge is expected to apply to material characterization.

  • PDF

A research on Bayesian inference model of human emotion (베이지안 이론을 이용한 감성 추론 모델에 관한 연구)

  • Kim, Ji-Hye;Hwang, Min-Cheol;Kim, Jong-Hwa;U, Jin-Cheol;Kim, Chi-Jung;Kim, Yong-U
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.95-98
    • /
    • 2009
  • 본 연구는 주관 감성에 따른 생리 데이터의 패턴을 분류하고, 임의의 생리 데이터의 패턴을 확인하여 각성-이완, 쾌-불쾌의 감성을 추론하기 위해 베이지안 이론(Bayesian learning)을 기반으로 한 추론 모델을 제안하는 것이 목적이다. 본 연구에서 제안하는 모델은 학습데이터를 분류하여 사전확률을 도출하는 학습 단계와 사후확률로 임의의 생리 데이터의 패턴을 분류하여 감성을 추론하는 추론 단계로 이루어진다. 자율 신경계 생리변수(PPG, GSR, SKT) 각각의 패턴 분류를 위해 1~7로 정규화를 시킨 후 선형 관계를 구하여 분류된 패턴의 사전확률을 구하였다. 다음으로 임의의 사전 확률 분포에 대한 사후 확률 분포의 계산을 위해 베이지안 이론을 적용하였다. 본 연구를 통해 주관적 평가를 실시하지 않고 다중 생리변수 인식을 통해 감성을 추론 할 수 있는 모델을 제안하였다.

  • PDF

확률론적 공간 자료 통합 모델을 이용한 산사태 취약성 분석

  • Park, No-Uk;Ji, Gwang-Hun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.02a
    • /
    • pp.254-260
    • /
    • 2005
  • 이 논문에서는 산사태 취약성 분석을 목적으로 확률론적 공간통합의 틀 안에서 범주형 자료와 연속형 자료를 효율적으로 처리할 수 있는 비모수적 우도비 추정 모델과 모수적 예측적 판별 분석 모델을 적용하였다. 적용 모델의 비교를 위해 1998년 여름철 산사태로 많은 피해를 입은 경기도 장흥 지역과 충청북도 보은 지역을 대상으로 사례연구를 수행하였다. 장흥 지역에서는 두 모델이 유사한 예측 능력을 나타내었으나, 보은 지역에서는 모수적 예측적 판별 분석 모델이 상대적으로 높은 예측 능력을 나타내었다. 결론적으로 제안한 두 모델은 산사태 취약성 분석을 위한 연속형 자료 표현에 효율적으로 적용될 수 있으며, 두 모델이 개별적인 연속형 자료 표현의 특성을 가지고 있기 때문에 다른 사례 연구를 통한 검증 작업이 병행되어야 할 것으로 생각된다.

  • PDF