• 제목/요약/키워드: 확률신경망

검색결과 261건 처리시간 0.029초

베이지안 망을 이용한 통행발생 모형의 설계 및 구축 (Design and Implementation of Trip Generation Model Using the Bayesian Networks)

  • 김현기;이상민;김강수
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.79-90
    • /
    • 2004
  • 베이지안 망(Bayesian Networks)은 인공 신경망, 유전자 알고리즘, 전문가시스템 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서, 베이지안 통계 이론(Bayesian Statistics Theory)을 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 2002년도 수도권 가구통행실태조사 자료의 가구, 개인 및 통행 특성(가구수입, 승용차 보유대수, 주택규모, 통행목적 등)을 반영하여, 베이지안 망을 이용한 통행발생 모형을 처음으로 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 가구수입의 구성비가 변하였을 때 승용차 보유대수와 주택규모 구성비의 변화율(확률)을 예측한다. 그리고 승용차 보유대수와 주택규모의 구성비가 변하였을 때 통행목적 구성비의 확률을 예측한다. 또한 동행목적의 발생량이 변화였을 때, 가구 특성 구성비의 변화에 따른 발생량을 예측한다. 따라서, 이 연구는 현실에는 존재하지만 설명변수들간의 복잡한 상관성을 배제하고 설명변수와 통행목적간의 단순한 직선관계를 가정하는 기존 통행발생 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 통행목적에 대한 정보의 부족으로 인한 통행발생 모형 구축의 어려움을 극복한다. 또한 통행목적의 변화를 실시간으로 모의실험(Simulation) 할 수 있는 방법론을 개발하여 다양한 교통정책에 확대 적용할 수 있을 것이다.

ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구 (Study on a Neural UPC by a Multiplexer Information in ATM)

  • 김영철;변재영;서현승
    • 전자공학회논문지C
    • /
    • 제36C권7호
    • /
    • pp.36-45
    • /
    • 1999
  • ATM망에서 트래픽 흐름을 제어하고 망 자원 사용을 효율적으로 사용하기 위해서는 폭주(Congestion)발생에 의한 망 성능 저하를 막고 폭주현상에 대처할 수 있는 적응적인 제어가 필요하다. 본 논문에서는 모든 트래픽에 대해 고정된 형태의 제어를 하는 Buffered Leaky Bucket과 적응성과 예측 기능을 갖는 신경회로망(Neural Network)을 이용하여 버퍼의 효율성을 높이고 망의 서비스 품질(QoS)로 구별되는 셀 손실율과 버퍼 지연을 테스트 및 성능 비교를 하였다. 또한 입력 트래픽의 다중화를 위해 사용되는 DWRR과 DWEDF의 셀 스케쥴링 알고리즘이 균등 지연을 만족할 수 있도록 개선하였다. 셀 스케쥴러로부터 망의 폭주 정보는 신경회로망을 이용한 Leaky Bucket에서 예측된 트래픽 손실율을 제어하고 손실율 정도에 따라 토큰 발생율과 버퍼 한계값은 제어된다. 이러한 트래픽 손실율 예측은 다음 입력 트래픽에 대한 손실과 버퍼지연을 줄일 수 있도록 제어의 효율성을 높일 수 있으며 다른 제어방식에도 응용될 수 있다. ATM 트래픽에 대한 신경회로망 학습과 예측 테스트를 위해 확률 랜덤 변수에 의해 발생된 셀 발생과 예측을 모의 실험하였으며, 이때 다양한 트래픽의 QoS가 향상되었음을 알 수 있었다.

  • PDF

신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어 (Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling)

  • 조현철;이진우;이영진;이권순
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.930-938
    • /
    • 2007
  • 영상에 나타나는 자막은 영상과 관계가 있는 정보를 포함한다. 이러한 영상과 관련 있는 정보를 이용하기 위해 영상으로부터 자막을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존의 연구는 일정한 높이의 자막이나 획의 두께를 지닌 자막에서만 정상적인 작동을 한다. 본 논문에서는 일정 크기 이상의 자막에 대해서 적용할 수 있는 크기에 무관한 자막 추출 방법을 제안한다. 먼저, 자막 연결 객체의 패턴 추출을 위해서 자막이 포함된 영상을 수집하고, 신경망을 이용해서 자막의 패턴을 분석한다. 그 후로는 사전에 추출한 패턴을 이용하여 입력 영상에서 자막을 추출한다. 실험에 사용된 영상은 뉴스, 다큐멘터리, 쇼 프로그램과 같은 대중 방송에서 수집하였다. 실험 결과는 다양한 크기의 자막을 포함한 영상을 사용하여 실험하였고, 자막 추출의 결과는 찾아진 연결객체 중에 자막의 비율과 자막 중에 찾아진 자막의 비율로 분석하였다. 실험 결과를 보면 제안한 방법에 의해 다양한 크기의 자막을 추출할 수 있음을 보여준다.

Underutilization 문제를 해결한 퍼지 신경회로망 모델 (A Fuzzy Neural Network Model Solving the Underutilization Problem)

  • 김용수;함창현;백용선
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.354-358
    • /
    • 2001
  • 본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.

  • PDF

정규화 및 교차검증 횟수 감소를 위한 무작위 풀링 연산 선택에 관한 연구 (A Study on Random Selection of Pooling Operations for Regularization and Reduction of Cross Validation)

  • 류서현
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-166
    • /
    • 2018
  • 본 논문에서는 컨볼루션 신경망 구조(Convolution Neural Network)에서 정규화 및 교차검증 횟수 감소를 위한 무작위로 풀링 연산을 선택하는 방법에 대해 설명한다. 컨볼루션 신경망 구조에서 풀링 연산은 피쳐맵(Feature Map) 크기 감소 및 이동 불변(Shift Invariant)을 위해 사용된다. 기존의 풀링 방법은 각 풀링 계층에서 하나의 풀링 연산이 적용된다. 이러한 방법은 학습 간 신경망 구조의 변화가 없기 때문에, 학습 자료에 과도하게 맞추는 과 적합(Overfitting) 문제를 가지고 있다. 또한 최적의 풀링 연산 조합을 찾기 위해서는, 각 풀링 연산 조합에 대해 교차검증을 하여 최고의 성능을 내는 조합을 찾아야 한다. 이러한 문제를 해결하기 위해, 풀링 계층에 확률적인 개념을 도입한 무작위 풀링 연산 선택 방법을 제안한다. 제안한 방법은 풀링 계층에 하나의 풀링 연산을 적용하지 않는다. 학습기간 동안 각 풀링 영역에서 여러 풀링 연산 중 하나를 무작위로 선택한다. 그리고 시험 시에는 각 풀링 영역에서 사용된 풀링 연산의 평균을 적용한다. 이러한 방법은 풀링 영역에서 서로 다른 풀링 조합을 사용한 구조의 평균을 한 것으로 볼 수 있다. 따라서, 컨볼루션 신경망 구조가 학습데이터에 과도하게 맞추어지는 과적합 문제를 피할 수 있으며, 또한 각 풀링 계층에서 특정 풀링 연산을 선택할 필요가 없기 때문에 교차 검증 횟수를 감소시킬 수 있다. 실험을 통해, 제안한 방법은 정규화 성능을 향상시킬 뿐만 아니라 및 교차 검증 횟수를 줄일 수 있다는 것을 검증하였다.

재킷식 해상풍력터빈 지지구조물의 손상추정기법 (Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine)

  • 이종원
    • 한국산학기술학회논문지
    • /
    • 제18권8호
    • /
    • pp.64-71
    • /
    • 2017
  • 본 연구에서는 재킷식 해상풍력터빈 지지구조물의 효과적인 건전성 모니터링을 위하여, 손상에 의한 구조물의 모드 특성 변화 및 군집신경망기법을 이용한 손상추정기법을 제안한다. 실용적 적용을 위하여 제한된 계측자료를 활용하고, 구조적으로 중요하며 손상이 발생될 확률이 큰 것으로 판단되는 중요부재를 대상으로 손상을 추정한다. 즉, 재킷식 지지구조물은 부재 개수가 많기 때문에, 모든 부재를 적절히 식별하기 위해서는 이에 상당하는 많은 수의 계측 데이터 채널 및 센서를 설치해야 한다. 이는 건전성 모니터링의 경제적 및 실용적인 측면에서 적절치 않다고 판단되며, 본 연구에서는 중요 구조부재에 대하여 제한된 계측자료를 활용하여 집중적으로 손상추정을 수행하기 위한 연구를 수행한다. 5 MW 해상풍력터빈에 적용될 수 있는 재킷식 해상풍력터빈 지지구조물을 모델링한 후, 수치 시뮬레이션을 수행하여 신경망의 훈련패턴을 생성한다. 이후, 군집신경망기법을 이용하여 중요부재에 대한 손상위치 및 손상정도를 20가지 손상경우에 대하여 추정한 결과, 모든 손상 경우에 대하여 성공적으로 손상을 판정할 수 있었으며, 군집신경망기법을 적용함으로써 추청결과의 정확성이 향상됨을 알 수 있었다. 또한 실험연구를 통하여 기법을 검증하였는데, 3가지 손상경우에 대하여 손상을 추정한 결과 합리적으로 손상을 추정할 수 있었다.

베이지안망을 이용한 유전자와 약물 간 관계 분석 (Analysis of Gene-Drug Interactions Using Bayesian Networks)

  • 오석준;황규백;장정호;장병탁
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.91-97
    • /
    • 2002
  • 최근의 생물학 연구를 위한 기기의 자동화 및 고속화는 생물학 관련 정보량의 급증을 가져오고 있다. 예를 들어, DNA chip에서 얻어지는 마이크로어레이(microarray)는 수천 종류의 유전자의 발현량을 동시에 측정한다. 이러한 기술들은 생물의 세포나 조직에서 일어나는 일련의 다양한 현상을 전체적으로 조망하는 관점에서 관찰할 수 있는 기회를 제공하고 있으며, 이를 통한 생명공학의 전반적인 발전이 기대되고 있다. 따라서 대량의 생물학 관련 정보의 분석이나 데이터 마이닝이 행해지고 있으며 이를 위한 대표적인 기법들로는 각종 클러스터링(clustering) 및 신경망 계열의 모델 등이 있다. 본 논문에서는 확률그래프모델의 하나인 베이지안망(Bayesian network)을 생물정보분석에 이용한다. 구체적으로 유전자 발현패턴과 약물의 활성패턴 및 암 종류 사이의 확률적 관계를 모델링한다. 이러한 모델은 NCI60 dataset(http://discover.nci.nih.gov)에서 베이지안망을 학습함으로써 구성된다. 분석의 대상이 되는 데이터가 sparse하기 때문에 발생하는 어려움들을 해결하기 위한 기법들이 제시되며 학습된 모델에 대한 검증은 이미 생물학적으로 확인되어 있는 사실과의 비교를 통해 이루어진다. 학습된 베이지안망 모델은 각각의 유전자 간, 혹은 유전자와 처리된 약물 간의 실제 생물학적 관계를 다수 표현하며, 이는 제시되는 방법이 생물학적으로 유의미한 가설을 데이터 분석을 통해 효율적으로 생성하는데 유용하게 활용될 수 있음을 보인다.

  • PDF

렌즈 사출성형 공정 상태 특징 추출 및 진단 알고리즘의 개발 (A Development of Feature Extraction and Condition Diagnosis Algorithm for Lens Injection Molding Process)

  • 백대성;남정수;이상원
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.1031-1040
    • /
    • 2014
  • In this paper, a new condition diagnosis algorithm for the lens injection molding process using various features extracted from cavity pressure, nozzle pressure and screw position signals is developed with the aid of probability neural network (PNN) method. A new feature extraction method is developed for identifying five (5), seven (7) and two (2) critical features from cavity pressure, nozzle pressure and screw position signals, respectively. The node energies extracted from cavity and nozzle pressure signals are also considered based on wavelet packet decomposition (WPD). The PNN method is introduced to build the condition diagnosis model by considering the extracted features and node energies. A series of the lens injection molding experiments are conducted to validate the model, and it is demonstrated that the proposed condition diagnosis model is useful with high diagnosis accuracy.

확률신경망에 기초한 교량구조물의 손상평가 (Probabilistic Neural Network-Based Damage Assessment for Bridge Structures)

  • 조효남;강경구;이성칠;허춘근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.169-179
    • /
    • 2002
  • This paper presents an efficient algorithm for the estimation of damage location and severity in structure using Probabilistic Neural Network (PNN). Artificial neural network has been being used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training data for neural network learning and ambiguity in the relation of neural network architecture with convergence of solution. In this paper, PNN is used as a pattern classifier to overcome those problems in the conventional neural network. The basic idea of damage assessment algorithm proposed in this paper is that modal characteristics from a damaged structure are compared with the training patterns which represent the damage in specific element to determine how close it is to training patterns in terms of the probability from PNN. The training pattern that gives a maximum probability implies that the element used in producing the training pattern is considered as a damaged one. The proposed damage assessment algorithm using PNN is applied to a 2-span continuous beam model structure to verify the algorithm.

External knowledge를 사용한 LFMMI 기반 음향 모델링 (LFMMI-based acoustic modeling by using external knowledge)

  • 박호성;강요셉;임민규;이동현;오준석;김지환
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.607-613
    • /
    • 2019
  • 본 논문은 external knowledge를 사용한 lattice 없는 상호 정보 최대화(Lattice Free Maximum Mutual Information, LF-MMI) 기반 음향 모델링 방법을 제안한다. External knowledge란 음향 모델에서 사용하는 학습 데이터 이외의 문자열 데이터를 말한다. LF-MMI란 심층 신경망(Deep Neural Network, DNN) 학습의 최적화를 위한 목적 함수의 일종으로, 구별 학습에서 높은 성능을 보인다. LF-MMI에는 DNN의 사후 확률을 계산하기 위해 음소의 열을 사전 확률로 갖는다. 본 논문에서는 LF-MMI의 목적식의 사전 확률을 담당하는 음소 모델링에 external knowlege를 사용함으로써 과적합의 가능성을 낮추고, 음향 모델의 성능을 높이는 방법을 제안한다. External memory를 사용하여 사전 확률을 생성한 LF-MMI 모델을 사용했을 때 기존 LF-MMI와 비교하여 14 %의 상대적 성능 개선을 보였다.