• Title/Summary/Keyword: 확률신경망

Search Result 261, Processing Time 0.022 seconds

Multi-class Feedback Algorithm for Region-based Image Retrieval (영역 기반 영상 검색을 위한 다중클래스 피드백 알고리즘)

  • Ko Byoung-Chul;Nam Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.383-392
    • /
    • 2006
  • In this paper, we propose a new relevance feedback algorithm using Probabilistic Neural Networks(PNN) while supporting multi-class learning. Then, to validate the effectiveness of our feedback approach, we incorporate the proposed algorithm into our region-based image retrieval tool, FRIP(Finding Regions In the Pictures). In our feedback approach, there is no need to assume that feature vectors are independent, and as well as it allows the system to insert additional classes for detail classification. In addition, it does not have a long computation time for training because it only has four layers. In the PNN classification process, we store the user's entire past feedback actions as a history in order to improve performance for future iterations. By using a history, our approach can capture the user's subjective intension more precisely and prevent retrieval performance errors which originate from fluctuating or degrading in the next iteration. The efficacy of our method is validated using a set of 3000 images derived from a Corel-photo CD.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

Predicting the number of disease occurrence using recurrent neural network (순환신경망을 이용한 질병발생건수 예측)

  • Lee, Seunghyeon;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.627-637
    • /
    • 2020
  • In this paper, the 1.24 million elderly patient medical data (HIRA-APS-2014-0053) provided by the Health Insurance Review and Assessment Service and weather data are analyzed with generalized estimating equation (GEE) model and long short term memory (LSTM) based recurrent neural network (RNN) model to predict the number of disease occurrence. To this end, we estimate the patient's residence as the area of the served medical institution, and the local weather data and medical data were merged. The status of disease occurrence is divided into three categories(occurrence of disease of interest, occurrence of other disease, no occurrence) during a week. The probabilities of categories are estimated by the GEE model and the RNN model. The number of cases of categories are predicted by adding the probabilities of categories. The comparison result shows that predictions of RNN model are more accurate than that of GEE model.

Development of Optimal Rehabilitation Model for Water Distribution System Based on Prediction of Pipe Deterioration (I) - Theory and Development of Model - (상수관로의 노후도 예측에 근거한 최적 개량 모형의 개발 (I) - 이론 및 모형개발 -)

  • Kim, Eung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.45-59
    • /
    • 2003
  • The method in this study, which is more efficiency than the existing method, propose the optimal rehabilitation model based on the deterioration prediction of the laying pipe by using the deterioration survey method of the water distribution system. The deterioration prediction model divides the deterioration degree of each pipe into 5 degree by using the probabilistic neural network. Also, the optimal residual durability is estimated by the calculated deterioration degree in each pipe and pipe diameter. The optimal rehabilitation model by integer programming base on the shortest path can calculate a time and cost of maintenance, rehabilitation, and replacement. Also, the model is divided into budget constraint and no budget constraint. Consequently, the model proposed by the study can be utilized as the quantitative method for the management of the water distribution system.

Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function (소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안)

  • Kim, Young-won;Lee, Soo-jin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • In the real world, new types of attacks or variants are constantly emerging, but attack traffic classification models developed through artificial neural networks and supervised learning do not properly detect new types of attacks that have not been trained. Most of the previous studies overlooked this problem and focused only on improving the structure of their artificial neural networks. As a result, a number of new attacks were frequently classified as normal traffic, and attack traffic classification performance was severly degraded. On the other hand, the softmax function, which outputs the probability that each class is correctly classified in the multi-class classification as a result, also has a significant impact on the classification performance because it fails to calculate the softmax score properly for a new type of attack traffic that has not been trained. In this paper, based on this characteristic of softmax function, we propose an efficient method to improve the classification performance against new types of attacks by classifying traffic with a probability below a certain level as attacks, and demonstrate the efficiency of our approach through experiments.

Optimal Algorithm and Number of Neurons in Deep Learning (딥러닝 학습에서 최적의 알고리즘과 뉴론수 탐색)

  • Jang, Ha-Young;You, Eun-Kyung;Kim, Hyeock-Jin
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.389-396
    • /
    • 2022
  • Deep Learning is based on a perceptron, and is currently being used in various fields such as image recognition, voice recognition, object detection, and drug development. Accordingly, a variety of learning algorithms have been proposed, and the number of neurons constituting a neural network varies greatly among researchers. This study analyzed the learning characteristics according to the number of neurons of the currently used SGD, momentum methods, AdaGrad, RMSProp, and Adam methods. To this end, a neural network was constructed with one input layer, three hidden layers, and one output layer. ReLU was applied to the activation function, cross entropy error (CEE) was applied to the loss function, and MNIST was used for the experimental dataset. As a result, it was concluded that the number of neurons 100-300, the algorithm Adam, and the number of learning (iteraction) 200 would be the most efficient in deep learning learning. This study will provide implications for the algorithm to be developed and the reference value of the number of neurons given new learning data in the future.

Privacy Preserving Techniques for Deep Learning in Multi-Party System (멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.647-654
    • /
    • 2023
  • Deep Learning is a useful method for classifying and recognizing complex data such as images and text, and the accuracy of the deep learning method is the basis for making artificial intelligence-based services on the Internet useful. However, the vast amount of user da vita used for training in deep learning has led to privacy violation problems, and it is worried that companies that have collected personal and sensitive data of users, such as photographs and voices, own the data indefinitely. Users cannot delete their data and cannot limit the purpose of use. For example, data owners such as medical institutions that want to apply deep learning technology to patients' medical records cannot share patient data because of privacy and confidentiality issues, making it difficult to benefit from deep learning technology. In this paper, we have designed a privacy preservation technique-applied deep learning technique that allows multiple workers to use a neural network model jointly, without sharing input datasets, in multi-party system. We proposed a method that can selectively share small subsets using an optimization algorithm based on modified stochastic gradient descent, confirming that it could facilitate training with increased learning accuracy while protecting private information.

Design of the Vision Based Head Tracker Using Area of Artificial Mark (인공표식의 면적을 이용하는 영상 기반 헤드 트랙커 설계)

  • 김종훈;이대우;조겸래
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.63-70
    • /
    • 2006
  • This paper describes research of using area of artificial mark on vision based head tracker system. A head tracker system consists of the translational and rotational motions which are detected by web camera. Results of the motion are taken from image processing and neural network. Because of the characteristics of cockpit, the specific color on the helmet is tracked for translational motion. And rotational motion is tracked via neural network. Ratio of two different colored area on the helmet is used as input of network. Neural network algorithms used, such as back-propagation and RBFN (Radial Basis Function Network). Both back-propagation using a characteristic of feedback and RBFN using a characteristic of statistics have a good performances for the tracking of nonlinear system such as a head motion. Finally, this paper analyzes and compares with tracking performance.

Hybrid dropout (하이브리드 드롭아웃)

  • Park, Chongsun;Lee, MyeongGyu
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.899-908
    • /
    • 2019
  • Massive in-depth neural networks with numerous parameters are powerful machine learning methods, but they have overfitting problems due to the excessive flexibility of the models. Dropout is one methods to overcome the problem of oversized neural networks. It is also an effective method that randomly drops input and hidden nodes from the neural network during training. Every sample is fed to a thinned network from an exponential number of different networks. In this study, instead of feeding one sample for each thinned network, two or more samples are used in fitting for one thinned network known as a Hybrid Dropout. Simulation results using real data show that the new method improves the stability of estimates and reduces the minimum error for the verification data.

A study on the Generation Method of Aircraft Wing Flexure Data Using Generative Adversarial Networks (생성적 적대 신경망을 이용한 항공기 날개 플렉셔 데이터 생성 방안에 관한 연구)

  • Ryu, Kyung-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • The accurate wing flexure model is required to improve the transfer alignment performance of guided weapon system mounted on a wing of fighter aircraft or armed helicopter. In order to solve this problem, mechanical or stochastical modeling methods have been studying, but modeling accuracy is too low to be applied to weapon systems. The deep learning techniques that have been studying recently are suitable for nonlinear. However, operating fighter aircraft for deep-learning modeling to secure a large amount of data is practically difficult. In this paper, it was used to generate amount of flexure data samples that are similar to the actual flexure data. And it was confirmed that generated data is similar to the actual data by utilizing "measures of similarity" which measures how much alike the two data objects are.