• Title/Summary/Keyword: 확률모형

Search Result 1,754, Processing Time 0.031 seconds

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

A Study on the Effect of Residential Environment Characteristics on Residential Satisfaction, Residential Ownership Consciousness, and Housing Movement: Focusing on MZ Generation in the COVID-19 Period (주거환경특성이 주거만족도, 주거보유의식과 주거이동에 미치는 영향 연구: 코로나19 시기의 MZ세대를 중심으로)

  • Yun-Hui, Hwang;Jaeho, Chung
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.47-66
    • /
    • 2023
  • This study reviews prior studies on the residential environment characteristics, residential satisfaction, residential ownership consciousness and housing movement of MZ generation and analyze the structural equation models using the 2020 Korea Housing Survey data. Using 14 residential characteristics based on three classifications, we explore the effects on residential satisfaction, residential ownership consciousness, and housing movement. The empirical results are summarized as follows. First, based on factor analysis with Varimax of principal component analysis, parking facility items were excluded from the analysis by hindering validity, and as a result, KMO was 0.925 and Bartlett's test result showed a significant probability of less than 0.01. This indicates that the factor analysis model was suitable. Second, the results of the structural equation analysis for the MZ generation show that the surrounding environment, which is a potential variable of the residential environment characteristics, was statistically significant, but the accessibility and convenience were not statistically significant. Third, we find that the higher the satisfaction with the accessibility of commercial facilities, the more significant the sense of housing ownership appears. This suggests that the younger generation such as the MZ generation has a stronger desire for consumption. Fourth, the overall housing satisfaction of the MZ generation was significant for housing movement, but not for housing ownership. Compared to the industrialized generation, the baby boom generation, and the X generation, MZ generation shows distinct factors for housing satisfaction, housing ownership, and housing movement. Therefore, the residential environment characteristics of the residential survey should be improved and supplemented following the trend of the times. In addition, the government and local governments should prioritize actively participating in the housing market that suits the environment and characteristics of the target generation. Finally, our study provides implications regarding the need for housing-related research on how differ in special temporal situations such as COVID-19 in the future.

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.

Assessment Study on Educational Programs for the Gifted Students in Mathematics (영재학급에서의 수학영재프로그램 평가에 관한 연구)

  • Kim, Jung-Hyun;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.235-257
    • /
    • 2010
  • Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Control of Human Clonorchiasis at Gokseong-gun and Sunchang-gun near the Sumjin River in Korea (섬진강 유역 곡성군, 순창군 지역 주민의 간흡충증 관리)

  • Kim, Suk-Il;Yun, Woo-Sang
    • Journal of agricultural medicine and community health
    • /
    • v.29 no.1
    • /
    • pp.163-175
    • /
    • 2004
  • Objectives: This study was carried out to decrease the prevalence of human clonorchiasis and to evaluate the control effect in two Clonorchis sinensis-endemic area of Gokseong-gun and Sunchang-gun adjacent to the Sumjin River in Korea. Methods: The formalin-ether concentration method for stool egg examination or ELISA was applied for the diagnosis of clonorchiasis. As a primary survey, according to the non-probability sampling, a total of 1,2.13 inhabitants at Gokseong-gun were screened through the stool examination, and 1,004 inhabitants at Sunchang-gun were screened through the ELISA. The humans infected with C. sinensis were medicated with praziquantel and educated for the prevention of reinfection with the fluke. After 9 months, as a secondary survey, each prevalence of 616 inhabitants at Gokseong-gun and 2.637 inhabitants at Sunchang-gun was followed-up for the decrease of human clonorchiasis. Results: The prevalence before the mass control was 39.0% at Gokseong-gun and 30.1% at Sunchang-gun in average from 61.5% to 8.9% according to the villages (Myeon) of the survey. In the riverside villages to the Sumjin River the prevalences were higher than other villages located far from the river. The prevalence after the control was decreased to the level of 22.4% at Gokseong-gun(P<0.0001) and 16,3% at Sunchang-gun (P<0.0001). Conclusions: These results suggested that human clonorchiasis was still highly endemic in riverside area of the Sumjin River and could be decreased through the control activities such as diagnosis, medication and education. It was highly recommended that a integrated control such as those of the present study must be adopted in other localities along the Sumjin River for the eradication of human clonorchiasis.

  • PDF

Evaluation of Scattered Dose to the Contralateral Breast by Separating Effect of Medial Tangential Field and Lateral Tangential Field: A Comparison of Common Primary Breast Irradiation Techniques (유방암 접선조사 치료 방법에 대한 반대쪽 유방에서의 산란선량 평가)

  • Ban, Tae-Joon;Jeon, Soo-Dong;Kwak, Jung-Won;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2012
  • Purpose: The concern of improving the quality of life and reducing side effects related to cancer treatment has been a subject of interest in recent years with advances in cancer treatment techniques and increasing survival time. This study is an analysis of differing scattered dose to the contralateral breast using common different treatment techniques. Materials and Methods: Eclipse 10.0 (Varian, USA) based $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FiF (field in field) plan were established using CT image of breast phantom which in our hospital. Each treatment plan were designed to exposure 400 cGy using CL-6EX (VARIAN, USA) and we measured scattered dose at 1 cm, 3 cm, 5 cm, 9 cm away from medial side of the phantom at 1 cm depth using ionization chamber (FC 65G, IBA). We carried out measurement by separating effect of medial tangential field and lateral tangential field and analyze. Results: The evaluation of scattered dose to contralateral breast, $30^{\circ}$ EDW plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FIF plan showed 6.55%, 4.72%, 2.79%, 2.33%, 1.87% about prescription dose of each treatment plan. The result of scattered dose measurement by separating effect of medial tangential field and lateral tangential field results were 4.94%, 3.33%, 1.55%, 1.17%, 0.77% about prescription dose at medial tangential field and 1.61%, 1.40%, 1.24%, 1.16%, 1.10% at lateral tangential field along with measured distance. Conclusion: In our experiment, FiF treatment technique generates minimum of scattered dose to contralateral breast which come from mainly phantom scatter factor. Whereas $30^{\circ}$ wedge plan generates maximum of scattered doses to contralateral breast and 3.3% of them was scattered from gantry head. The description of treatment planning system showed a loss of precision for a relatively low scatter dose region. Scattered dose out of Treatment radiation field is relatively lower than prescription dose but, in decision of radiation therapy, it cannot be ignored that doses to contralateral breast are related with probability of secondary cancer.

  • PDF

Impacts of R&D and Smallness of Scale on the Total Factor Productivity by Industry (R&D와 규모의 영세성이 산업별 총요소생산성에 미치는 영향)

  • Kim, Jung-Hwan;Lee, Dong-Ki;Lee, Bu-Hyung;Joo, Won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.2 no.4
    • /
    • pp.71-102
    • /
    • 2007
  • There were many comprehensive analyses conducted within the existing research activities wherein factors affecting technology progress including investment in R&D vis-${\Box}$-vis their influences act as the determinants of TFP. Note, however, that there were few comprehensive analysis in the industrial research performed regarding the impact of the economy of scale as it affects TFP; most of these research studies dealt with the analysis of the non -parametric Malmquist productivity index or used the stochastic frontier production function models. No comprehensive analysis on the impacts of individual independent variables affecting TFP was performed. Therefore, this study obtained the TFP increase rate of each industry by analyzing the factors of the existing growth accounting equation and comprehensively analyzed the TFP determinants by constructing a comprehensive analysis model considering the investment in R&D and economy of scale (smallness by industry) as the influencers of TFP by industry. First, for the TFP increase rate of the 15 industries as a whole, the annual average increase rate for 1993${\sim}$ 1997 was approximately 3.8% only; during 1999${\sim}$ 2000 following the foreign exchange crisis, however, the annual increase rate rose to approximately 7.8%. By industry, the annual average increase rate of TFP between 1993 and 2000 stood at 11.6%, the highest in the electrical and electronic equipment manufacturing business and IT manufacturing sector. In contrast, a -0.4% increase rate was recorded in the furniture and other product manufacturing sectors. In the case of the service industry, the TFP increase rate was 7.3% in the transportation, warehousing, and communication sectors. This is much higher than the 2.9% posted in the electricity, water, and gas sectors and -3.7% recorded in the wholesale, food, and hotel businesses. The results of the comprehensive analysis conducted on the determinants of TFP showed that the correlations between R&D and TFP in general were positive (+) correlations whose significance has yet to be validated; in the model where the self-employed and unpaid family workers were used as proxy variables indicating the smallness of industry out of the total number of workers, however, significant negative (-) correlations were noted. On the other hand, the estimation factors of variables surrogating the smallness of scale in each industry showed that a consistently high "smallness of scale" in an industry means a decrease in the increase rate of TFP in the same industry.

  • PDF

The Effects of Female Wage on Fertility in Korea (여성의 임금수준이 출산율에 미치는 영향 분석)

  • Kim, Jungho
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.105-138
    • /
    • 2009
  • Although the decline in fertility rate is generally observed along the history of economic development throughout the world, the continuing decline hitting below the replacement level in Korea over the recent years gathered serious social concerns on the ground that it accelerates the process of population aging. The total fertility rate in Koreareached 2.08 in 1983, and gradually fell to the levels of 1.08 in 2005 and 1.26 in 2007. The policy debate over the role of the government has been focused mainly on the level of theoretical discussion without substantial basis on firm empirical evidence and the determinants of fertility. The objective of the paper is to empirically investigate the fertility effect of the female wage, which is understood as one of the most important determinants of fertility in Koreasince 1980 focusing on one aspect of fertility, namely birth spacing. Using the Korean National Fertility Survey conducted in 2006, I estimate a duration model of first and second births taking into account individual heterogeneity, which turned out to be an important factor to control for. Compared with previous studies in the literature on the Korean fertility, the study has an advantage of using the complete pregnancy history of women in a more representative sample. Unlike the previous studies, the analysis also deals with the endogeneity of marriage by treating a certain age, rather than age at marriage, as the time in which a woman becomes exposed to the risk of pregnancy. The study shares the common problem in the literature on birth spacing of lacking relevant wage information for respondents in a retrospective survey. I estimate the wage series as a function of the basic characteristics using the annual Wage Structure Survey from 1980 to 2005, which is considered as a nationally representative sample for wage information of employees. The results suggest that the increase in female wage by 10 percent leads to a decrease in second birth hazard by 0.56~0.92 percentage points and that the increase in spouse's wage by the equal amount is accompanied by the increase in second birth hazard by 0.36~1.13 percentage points. These estimates are more precisely estimated and of smaller magnitude than those presented by the previous studies. The results are robust to the different specifications of the wage equation. The simulation analysis based on the predicted values shows that about 17% of the change in the second birth hazard over the period 1980 to 2005 was due to the change in the female wage. Although there is some limitation in data, the results can be viewed as one estimate of the role of female wage on the recent fertility decline in Korea. The question raised by the paper is not a normative one of whether a government should promote childbearing but a positive one thatexplains fertility decline. Therefore, if there is a wide consensus on promoting childbearing, the finding suggests that the policies designed to reduce the opportunity cost of women in the labor market would be effective. The recent movement of implementing a wide range of family-friendly policies including child care support, maternity leave, parental leave and tax benefit in developed countries should be understood in this context.

  • PDF