본 논문의 목적은 교통망 분석에 있어서 중요한 그러나 흔희 발생하지 않는 사건의 발생확률을 추정하는 방법론 개발에 있다. 예를 들어, 안정적(stable) 교통망에서 일시적인 혼잡현상이 발생할 확률을 씨뮬레이숀을 통해 추정하는 방법에 관한 것이다. 이 분야에서 활발한 연구([3], [12]) 가 있어 왔으나 개괄적(Heuristic) 방법에 제한되어 있었다. 본 논문은 위 문제에 대하여 포괄적(unified)이며 이론적인 방법론을 제시하였다. 이를 위해 대 분산이론(Large Deviation Theory)과 중요표본추출(Importance Sampling)기법이 이용되었으며 예로서 사용된 망은 두개의 구간이 이어진 교통망이다. 부수적으로 혼잡현상의 가장 대표적 형태를 구하는 방법이 제시되었다.
Communications for Statistical Applications and Methods
/
v.3
no.2
/
pp.227-237
/
1996
비중심 ${\chi}^2$분포의 누적분포함수의 계산은 ${\chi}^2$검정에서 요구되고 있는 새로운 접근방법으로 신경망 이론을 적용하기 위하여 입력층의 입력노드가 세개, 출력증의 축력노드가 한개 그리고 한개의 은닉층으로 구성된 다층 퍼셉트론 네트워크부터 역전파 알고리즘을 개발하여 비중심${\chi}^2$분포의 확률계산을 시도하였다. 정확성과 계산속도를 고려하여 기존의 방법과 비교한 결과 효율적임을 알 수 있다.
Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu;Choi, In-Jung
Journal of the Korea institute for structural maintenance and inspection
/
v.11
no.1
/
pp.103-112
/
2007
Recently structures become longer and higher because of the developments of new materials and construction techniques. However, such modern structures are susceptible to excessive structural vibrations, which may induce problems of serviceability and structural damages. In this paper we attempt to control structural vibration using the probabilistic neural network(PNN) and the artificial neural network(ANN) based on the training pattern that consist of only the structural state vector and the control force. The state vectors of the structure and control forces made by linear quadratic regulator(LQR) algorithm are used for training pattern of PNN and ANN. The proposed algorithm is applied for the vibration control of the three story shear building under Northridge earthquake. Control results by the proposed PNN and ANN are compared with each other.
Kim, Doo-Kie;Chang, Seong-Kyu;Kim, Dong-Hyawn;Lee, Jong-Jae
Proceedings of the Earthquake Engineering Society of Korea Conference
/
2006.03a
/
pp.382-389
/
2006
구조 재료와 시공기술의 발달로 구조물은 높고 길게 설계할 수 있게 되었으나, 그에 따른 진동 문제와 사용성에 관한 문제가 발생하였고 구조물의 과다한 변위는 구조물에 심각한 손상을 발생 시켰다. 이러한 구조물의 진동 문제를 해결하기 위하여 본 논문에서는 확률신경망이론을 사용한 구조물의 능동제어방법을 제안하였다. 구조물의 제어를 위하여 LQR 제어알고리즘을 이용하여 구조물의 상태벡터와 제어력을 구한 후, 상태벡터를 입력으로 제어력을 출력으로 하는 확률신경망의 훈련패턴을 구성하였다. 제안된 방법을 사용하여 지진하중을 받는 3층 빌딩구조물을 제어하였고, 기존의 인공신경망의 제어 결과와 비교하였다.
Journal of the Korea Society of Computer and Information
/
v.1
no.1
/
pp.83-94
/
1996
The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. In this paper. the evaluation of the cumulative function of the single noncentral F distribution is applied to the neural network theory. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the results obtained by neural network theory and the Patnaik's values.
The Transactions of the Korea Information Processing Society
/
v.4
no.1
/
pp.177-183
/
1997
The cumulative function of the noncentral t distribution calculate power in testing equality of means of two normal populations and confidence intervals for the ratio of population mean to standard deviation. In this paper, the evaluation of the cumulative function of noncentral t distribution is applied to the neural network consists of the multi-layer perception structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the Fisher's values and the results obtained by neural network theory.
본 논문은 고객의 수요정보에 대해 모호한 정보를 가진 공급자와 구매자 사이의 공급망 계약에 관한 것을 다루고 있는 것으로, 고객 수요에 대한 불확실성은 확률적 프로그래밍 모델에서 공식적으로 다루어져왔다. 확률적 프로그램의 한 가지 핵심적인 가정은 널리 알려져 있는바와 같이 수요에 대한 확률분포가 알려져 있다는 것이다. 그럼에도 불구하고 만약 수요에 대한 정보가 모호하거나 정확하지 않다면 수요에 대한 확률분포가 정확하지 않다는 점이다. 이런 상황에서 퍼지 이론은 수요정보를 나타내는데 유용하다고 할수 있다. 본 논문은 퍼지 랜덤수요변수들을 분산시스템의 공급망 계약에서 다루고 있다. 이 계약은 구매자의 주문량을 조정하는 옵션을 이용한다. 본 연구는 퍼지 랜덤 변수들을 GMIR(Graded Mean Integration Representation)을 이용하여, 알고리즘을 통해 구현함으로써 실증적 결과 값을 제시하고 미래 연구의 확장 가능성을 제시하고 있다.
Journal of the Korean Society for Precision Engineering
/
v.14
no.10
/
pp.141-150
/
1997
분산은 확률모델을 표현하는 유용한 변수중 하나이다. 입력변수에 대한 함수로 표현되는 조건부 분산을 학습하는 신경회로망에 대한 많은 연구가 있어왔다. VALEAN이라는 신경회로망 역시 이러한 많은 연구중 하나인데 이것은 기본적으로 feedforward 다층 퍼셉트론 구조를 가지며 새롭게 제시된 에너지 함수를 사용하고 있다. 이 논문에서는 이 에너지 모델에 의해 결정되는 피드백에러(델타)가 신경망의 transient, steady state에서 미치는 영향을 다루었다. 과도 상태 분석에서는 델타와 수렴성, 안정성에 관한 내용을 다루고 모의 실험을 하였으며 정상 상태 분석에서는 신경회로망의 정상상태 에러의 크기와 델타의 크기사이의 상관관계에 대하여 다루었다. 학습 알고 리듬이 확률적이므로 정상상태 역시 확률적인 상태를 나타낸다. 따라서 델타의 크기에 따른 정상 상태 에러의 최대치는 확률적인 모델을 가지게 된다. 여기서는 이 확률 관계를 분석적으로 규명하고 이에 따라 원하는 신뢰도로 정상 상태 에러를 제어하기 위해 필요한 델타의 크기를 예측할 수 있는 이론적 배경을 마련하게 된다.
Kim, Sung-Hoon;Lee, Sang-Il;Lee, Ki-Sung;Cho, Seong-Ik;Park, Jong-Hyun;Choi, Kyoung-Ho
Journal of Korea Spatial Information System Society
/
v.11
no.1
/
pp.137-144
/
2009
Understanding lane markings in a live video captured from a moving vehicle is essential to build services for intelligent vehicles such as LDWS(Lane Departure Warning Systems), unmanned vehicles, video-based car navigation systems. In this paper, we present a novel approach to recognize the color of lane markings and the lane number that he/she is driving on. More specifically, we present a background-color removal approach to understand the color of lane markings for various illumination conditions, such as backlight, sunset, and so on. In addition, we present a probabilistic network approach to decide the lane number. According to our experimental results, the proposed idea shows promising results to detect lane number in a various illumination conditions and road environments.
In this study, we applied the Bayesian Network for the case of the mode choice models using the Seoul metropolitan area's house trip survey Data. Sex and age were used lot the independent variables for the explanation or the mode choice, and the relationships between the mode choice and the travellers' social characteristics were identified by the Bayesian Network. Furthermore, trip and mode's characteristics such as time and fare were also used for independent variables and the mode choice models were developed. It was found that the Bayesian Network were useful tool to overcome the problems which were in the traditional mode choice models. In particular, the various transport policies could be evaluated in the very short time by the established relation-ships. It is expected that the Bayesian Network will be utilized as the important tools for the transport analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.