• Title/Summary/Keyword: 확률론적 최적제어

Search Result 4, Processing Time 0.018 seconds

Investigations on Dynamic Trading Strategy Utilizing Stochastic Optimal Control and Machine Learning (확률론적 최적제어와 기계학습을 이용한 동적 트레이딩 전략에 관한 고찰)

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.348-353
    • /
    • 2013
  • Recently, control theory including stochastic optimal control and various machine-learning-based artificial intelligence methods have become major tools in the field of financial engineering. In this paper, we briefly review some recent papers utilizing stochastic optimal control theory in the fields of the pair trading for mean-reverting markets and the trend-following strategy, and consider a couple of strategies utilizing both stochastic optimal control theory and machine learning methods to acquire more flexible and accessible tools. Illustrative simulations show that the considered strategies can yield encouraging results when applied to a set of real financial market data.

Investigations on data-driven stochastic optimal control and approximate-inference-based reinforcement learning methods (데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화 학습 방법론에 관한 고찰)

  • Park, Jooyoung;Ji, Seunghyun;Sung, Keehoon;Heo, Seongman;Park, Kyungwook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • Recently in the fields o f stochastic optimal control ( SOC) and reinforcemnet l earning (RL), there have been a great deal of research efforts for the problem of finding data-based sub-optimal control policies. The conventional theory for finding optimal controllers via the value-function-based dynamic programming was established for solving the stochastic optimal control problems with solid theoretical background. However, they can be successfully applied only to extremely simple cases. Hence, the data-based modern approach, which tries to find sub-optimal solutions utilizing relevant data such as the state-transition and reward signals instead of rigorous mathematical analyses, is particularly attractive to practical applications. In this paper, we consider a couple of methods combining the modern SOC strategies and approximate inference together with machine-learning-based data treatment methods. Also, we apply the resultant methods to a variety of application domains including financial engineering, and observe their performance.

Application of discrete stochastic optimal control system for aircraft autopilot design (항공기의 자동조종장치설계에 대한 이산확률최적설계의 적용)

  • 이상기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.537-540
    • /
    • 1987
  • 항공기가 평형상태로 비행하는 도중 돌풍과 같은 외부교란을 만난 교란상태운동은 선형화된 미분방정식으로 표현되며 비교적 짧은 비행시간동안의 비행은 선형시 불변계가 된다. 돌풍은 Gauss-Markov확률과정으로 모델링 되며, 항공기가 돌풍을 만난 교란상태운동은 시스템론적으로 보면 백색잡음이 성형필터를 거쳐 계에 입력되는 것과 같다. 초기의 설계방법은 고전적인 주파수영역에서의 해석방법을 사용하였으나 1960년대에 최적제어이론이 도입되면서 평가함수를 사용하여 원하는 비행특성을 얻는 방법을 사용하게 되었다. 그 후 계에 입력되는 외란과 측정시의 잡음으로 인한 불확실한 측정량으로부터 최적상태변수의 추정을 위해 필터링이론을 도입한 확률제어이론을 적용하여 자동조종장치를 설계하게 되었다. 이때까지는 연속제어계로 설계되었으며 그 후 측정신호를 샘플링하여 연속제어계와 등가의 이산제어계를 사용한 자동조종장치가 등장하였으며 이 경우 설계기법으로는 연속제어계를 사용하고 실현시킬 때는 디지털컴퓨터를 사용하였다. 이는 제어하는 동안 계의 계수와 제어법칙을 바꾸어 줄 수 있는 이산제어계의 장점을 이용하지 못하므로 처음부터 계를 등가의 이산계로 보고 제어계를 설계하는 방법이 도입되었다. 이 때 샘플링간격의 결정과 Quantization 영향이 설계시 고려되어야 한다.

  • PDF

Optimal Control of Voltage and Reactive Power in Local Area Using Genetic Algorithm (유전알고리즘을 이용한 지역계통의 전압 및 무효전력 최적제어)

  • 김종율;김학만;남기영
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • In system planing and operation, voltage and reactive power control is very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used switched shunt capacitor to improve the voltage profile and to reduce system losses. Since there are many switched shunt capacitors in power system, so it if necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm (GA) is used to find optimal coordination of switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E and the results of simulation are compared with sensitivity method.