• Title/Summary/Keyword: 확관

Search Result 47, Processing Time 0.022 seconds

Analysis of Tube Expansion by Hydroforming (하이드로포밍에 의한 튜브 확관에 대한 해석)

  • Lee, Jae-Won;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2253-2261
    • /
    • 2002
  • Recently the hydroforming technology has drawn a lot of attention because of its capability to produce high quality and light weight parts. In the present study, the tube expansion - one of the simplest hydroforming processes, has been investigated in order to understand fundamental phenomena such as deformation characteristics and effect of process parameters. As a result, the most important process parameters, which determine the state of stress at the expanded zone, were found to be pressure and die displacement. If the stress becomes equi-axial tension at the zone, necking occurs at some distance from the weld line and develops into a crack along the axial direction. Some aspects of mechanical property measurements as well as distributions of hardness and microstructure are also discussed in this paper.

The Optimization Processing on a Expanded Tube Using Mini-Tab (Mini-Tab을 이용한 D-Tube 확관 최적 공정 설계)

  • Joo, Won-Kyung;Kwun, Yong-Gu;Bae, Sung-In;Song, Jung-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.751-755
    • /
    • 2007
  • The purpose of this study is to find the optimization processing on expanded tube using Taguchi method which was generally used to analyze the effects of various control factors. Mini-Tab is a good for program that is making a selection using Taguchi method. The results of experimental test and analysis are as follows. Optimization processing on a expanded tube is dependent on lubrication condition. The slight eccentricity of expanded tube was obtained a good results on the expanded tube. When expending processing on the expanded tube was performed, the test specimens were almost unaffected by changing pressure loading. The tendencies of test results were related to lubrication condition and eccentricity in expending processing. As a result, a proper lubrication condition and eccentricity in the step of design will improve the optimization processing of expanded tube.

  • PDF

Development of Hybrid Expander Unit for Fin Tube Heat Exchanger (핀튜브 열교환기용 전관확관 유닛 개발)

  • Roh, Geonsang;Kim, Jongnam
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.165-168
    • /
    • 2011
  • In this paper, the hybrid tube expander unit for fin and tube type heat exchanger are developed by means of enlarging and inserting the smooth tube with a small diameter to a finned tube having larger diameter. In other word, the tube expander tool that is easy to attach and remove from tube is developed. The hybrid tube expander unit developed in this study can move easily and enlarge the tube without fixing at tube sheet. Also, this unit has a function removing scales inside tube by replacing a tube expander ball.

Development of Expandable Steel Pipe Piles to Improve Bearing Capacity (지지력 향상을 위한 확장형 강관말뚝에 관한 연구)

  • Kim, Uiseok;Kim, Junghoon;Kim, Jiyoon;Min, Byungchan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.5-13
    • /
    • 2021
  • Expandable steel pipe piles have been developed to ensure stability and reduce construction costs during underground floor remodeling and extension work. Expandable steel pipe piles are more economical and stable than micropiles. Extensible steel pipe pile is a method of improving the performance of steel pipes by expanding steel pipes underground. In this paper, the changes in buckling strength according to the shape of steel pipes in an extended steel pipe pile were identified, a numerical analysis model was developed to determine the expended part effect of bumps due to steel pipe expansion, and the optimal steel pipe expansion was calculated through material tests. The larger the expansion diameter of the steel pipe and the greater the number of expanded part, the greater the buckling strength. Numerical results showed that the number of expanded part has a greater effect on buckling strength than the expansion rate. When the expansion rate is more than 1.2 times, it can be seen that as the number of expanded part increases, the effect of increasing buckling strength increases significantly. It was also noted that the expanded part effect of the bumps occur significantly when the extension angle is less than 45° and the expansion rate is 1.3 times higher. When the steel pipe is failure, the expanded rate is 20 to 32%, averaging 25.4%. Through the material test, it was analyzed that it is desirable to limit the maximum expansion rate for performing steel pipes to 16%.

Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger (핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향)

  • Lee, Sang-Mu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.

A Finite Element Analysis of Electromagnetic Forming for Tube Expansion (전자기 확관성형의 유한요소 해석)

  • 이성호;이동녕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1872-1885
    • /
    • 1991
  • The analysis of electromagnetic forming process consists of the analysis of the electric circuit and the dynamic deformation analysis. The purpose of the electric circuit analysis is to calculate the magnetic pressure and to apply it to the deformation analysis. Some investigators performed the analysis assuming the pressure distribution in longitudinal direction. However there was a difference between the calculated and experimental results. The difference mainly came from the assumption of the pressure distribution. One must know the magnetic field distribution in an actual situation for the analysis to be less erroneous. In this work the electromagnetic field analysis was performed by the finite element method to obtain a more realistic pressure distribution. A better agreement between the calculated and experimental results was obtained. It became possible to predict the deformation behavior of the workpiece of finite length.

Evaporation Heat Transfer and Pressure Drop in Micro-Fin Tubes Before and After Tube-Expansion (마이크로핀관의 확관 전후 열전달 및 압력강하 변화 특성에 관한 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • 연구논문집
    • /
    • s.34
    • /
    • pp.29-38
    • /
    • 2004
  • The objective of this study is to investigate the pressure drop and heat transfer characteristics of the micro-fin tubes before and after the tube-expansion process. Test tubes are single-grooved micro-fin tubes made of copper with an outer diameter of 9.52 mm before the tube-expansion. The direct heating method is applied in order to make the refrigerant evaporated in the micro-fin tubes. The test ranges of the heat flux, mass flux, and the saturation pressure are 5 to 15kW/$m^2$, 100 to 200 kg/$m^2s$ and 540 to 790 kPa, respectively. The effects of the mass flux, heat flux, and the saturation pressure of the refrigerant on the pressure drop and the heat transfer are presented for the refrigerant R22. In the test conditions of this study, the heat transfer coefficient for the micro-fin tube after the tube-expansion is about 16.5% smaller than that before the tube-expansion because the fin height of micro-fin is reduced and the fin shape becomes flatter. The micro-fin tube after the tube-expansion has about 7.7% greater average pressure drop than that before the tube-expansion process.

  • PDF

Heat Transfer Characteristics of Fin-Tube Heat Exchanger using Two-Port Tube of Small Inner Diameter by Mechanical Expansion (연결세경관을 이용한 휜관형 열교환기의 기계확관에 의한 전열특성)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.428-433
    • /
    • 2016
  • The fin and tube heat exchanger using a two-port tube has in air-conditioner heat exchanger because heat transfer performance. This study investigates the feasibility of a fin and tube heat exchanger using two-port copper tube by mechanical expansion. The optimum size of the tube-expanding bullet for the heat exchanger using two-port tube was through numerical calculation. The heat exchanger using a two-port tube was fabricated by mechanical expansion, and the heat exchanger performance was evaluated condensation and evaporation experiments. Compared to the heat exchanger of a conventional circular tube, the pressure drop per unit length of the heat exchanger with a two-port tube decreased. Compared to the heat exchanger using a conventional circular tube, the overall heat transfer coefficient of heat exchanger with a two-port tube increased up to 13% in the case of condensation, and up to 25% in the case of evaporation. The two-port tube heat exchanger outperforms conventional heat exchanger for air conditioner with a inner grooved circular tube.

Design of Pipe Expanding Die by Upper Bound Analysis and Finite Element Method (상계법과 유한요소법을 이용한 확관금형 설계)

  • Cho, Yong-Il;Kim, Seung-Hwan;Qiu, Yuan-gen;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.98-104
    • /
    • 2020
  • Pipe expansion involves various methods to enlarge the diameter of the pipes with the use of a mandrel or punch placed inside the pipe. In this study, the upper bound method was used to analyze the pipe expanding process as well as design a die. A kinematically admissible velocity field was derived for the upper bound analysis with the occurrence of pipe thinning during the expansion factored in. The analysis confirms that a semi-cone angle of the punch between 15ween pip is most advantageous for pipe expansion. The results of the upper bound analysis, which were also consistent with those of the FEM, can be useful for the design of a pipe expansion die.

The Elasto-Plastic Stress Analysis of Tube Expansion for Marine TEMA(Tubular Exchanger Manufactures Associations) Heat Exchangers (선박용 TEMA 열교환기의 전열관 확관시 탄소성 응력 해석)

  • Kim, Ok-Sam;Park, Jong-Dai
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 2011
  • Marine TEMA heat exchanger is the equipment to transfer the heat energy through both fluids that are enclosed separately by applying conduction and convection phenomena for a large vessels, Especially for heat exchanger working under the high temperature and high pressure, the expansion ratio should be taken into account other than under the low temperature and low pressure. This study was tried to find out the ideal expansion ratio through analyzing the elasto-plastic stress behavior of deformation while tubes are expanded with the finite element methods.