• Title/Summary/Keyword: 화학적 박리

Search Result 165, Processing Time 0.027 seconds

Study on the Material and Deterioration Characteristics of the Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri, Cheongju, Korea (청주 비중리 석조여래삼존상 및 석조여래입상의 재질특성과 손상특성 연구)

  • Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong;Kim, Yuri
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.778-790
    • /
    • 2021
  • The Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri are state-designated heritage (treasure) statues having the Buddha style of the Goryeo dynasty from the 6th century. Conservation scientific investigations were conducted to understand the preservation status of these stone Buddha statues and to establish a conservation plan. The Stone Seated Buddha Triad and Stone Standing Buddha are composed of fine-medium grained biotite granite, which is considered to be of the same origin owing to their low magnetic susceptibility distribution of less than 0.2 (×10-3 SI unit) and similar mineral characteristics. The Stone Seated Buddha Triad has highly homogenous mineral composition and particle size, whole-rock magnetic susceptibility, and geochemical characteristics very similar to those of the nearby outcrop. It was confirmed that a combination of physical, chemical, and biological factors affects the Stone Buddha statues. In particular, both the Stone Seated Buddha Triad and Stone Standing Buddha tend to be chipped off from the front and cracked and scaled from the back. The Stone Standing Buddha located outdoors experiences granularity decomposition and black algae formation, which accelerate the weathering under unfavorable conservation environments. The result of non-destructive physical property diagnosis using ultrasonic velocity showed that both the Stone Seated Buddha Triad and Stone Standing Buddha have been completely weathered (CW), indicating very poor physical properties.

The synthesis of ultrathin Nb-doped TiOx nanosheets (초박막 두께의 Nb-TiOx 나노시트 합성)

  • Lee, Sang Eun;Seo, Jun;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.194-199
    • /
    • 2020
  • By controlling the composition of the metal-oxide nanosheet having a two-dimensional layered crystal structure, material properties and application can be extended. In this study, the composition of the nanosheet could be expanded from pure composition to doping composition by successfully synthesizing the TiO2 nanosheet doped with Nb. Specifically, the doping composition was designed when synthesizing the layered metal oxide as a starting material (K0.8Ti1.73-xNbxLi0.27O4, x = 0, 0.03, 0.07) and chemical exfoliation was performed. By doing this, it was possible to obtain the Nb-doped TiOy ultrathin nanosheet. The size of the nano sheet was 2 ㎛ or less based on the long length in the x-y direction, and the thickness was about 1 nm. Nb-doping was confirmed by XRD and SEM-EDS analysis.

Material Stability Assessment of Low Oxygen and Heating Treatment (저산소 및 열처리법에 대한 문화재 재질 안정성 평가)

  • Jang, Han Gyeol;Baek, Na Yeon;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • Low oxygen treatment and heating treatment are used to prevent insects in the field of food science. These eco-friendly control methods can be applied to biological control technique in conservation treatment of organic cultural properties. To evaluate material stability, low-oxygen treatment and low oxygen treatment are applied to wood, pigment, paper and textile that are related to historical wooden buildings. As a result, wood moisture content declined after low oxygen treatment. But decline rate is a little, so it can be expected to turn back original state as time passes. And test result on pigment, paper, textile of chrominance and strength of test materials are stable. But after heating treatment, pigments are separated.

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide (마이크로파 조사가 산화그래핀의 화학적 박리에 미치는 효과)

  • Lee, Jae-Hee;Hwang, Ki-Wan;Jeong, Young-Hoon;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.708-713
    • /
    • 2013
  • Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.

Synthesis of the Low-Hygroscopic Polyimide for 2-Layer Flexible Copper Clad Laminate (2층 연성동박적층판용 저흡습 폴리이미드의 합성)

  • Kim, W.;Park, S.J.;Baek, J.O.;Gong, H.J.;Ahn, B.H.
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.82-87
    • /
    • 2008
  • In this study, nine kinds of polyimides were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), 4,4'-(4,4'-isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA), m-pheny lenediamine (m-PDA) and 4,4'-oxydianiline (ODA) by controlling molar ratio of monomers. Synthesized polyimides were used as insulator films for 2-layer Flexible Copper Clad Laminate(FCCL) which were manufactured by the casting method. Glass transition temperature and thermal degradation temperature for 5% weight loss of the polyimide film were improved by increasing contents of m-PDA and PMDA, respectively. Water absorption of polyimide film was reduced by increasing contents of ODA and BPADA which have relatively long structure, respectively. Peel strength of 2-layer FCCL was improved by increasing contents of ODA and BPADA.

Effect of Drying Methods on the Production of Graphenes Oxide Powder Prepared by Chemical Exfoliation (화학적 박리법으로 제조된 산화그래핀 분말의 건조방법에 따른 물성 비교)

  • Rho, Sangkyun;Noh, Kyung-Hun;Eom, Sung-Hun;Hur, Seung Hyun;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.592-598
    • /
    • 2013
  • Graphene oxide powders prepared by two different drying processes, freeze drying and spray drying, were studied to compare the effect of the drying method on the physical properties of graphene oxide powder. The graphene oxide dispersion was prepared from graphite by chemical delamination with the aid of sulfuric acid and permanganic acid, and the dispersion was further washed and re-dispersed in a mixed solvent of water and isopropyl alcohol. A freeze drying method can feasibly minimize damage to the sample, but it requires a long process time. In contrast, spray drying is able to remove a solvent in a relatively short time, though this process requires exposure to a high temperature for a rapid evaporation of the solvent. The powders prepared by freeze drying and spray drying were characterized and compared by Raman spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and by an elemental analysis. The graphene oxide powders showed similar chemical compositions; however, the morphologies of the powders differed in that the graphene oxide prepared by spray drying had a winkled morphology and a higher apparent density compared to the powder prepared by freeze drying. The graphene oxide powders were reduced at $900^{\circ}C$ in an atmosphere of $N_2$. The effect of the drying process on the properties of the reduced graphene oxide was examined by SEM, TEM and Raman spectroscopy.

Optoelectric properties of hybrid materials with Ag-nanowire and 2-dimensional structured RuO2 (은나노와이어와 2차원 구조 루테늄산화물 하이브리드 재료의 광전기적 특성)

  • Jeong Min Lee;Hee Jung Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.55-60
    • /
    • 2024
  • Two-dimensional (2D) RuO2 nanosheets with nanometer thickness were synthesized using a chemical exfoliation method. The synthesized 2D-RuO2 was hybridized with Ag-nanowire (NW), which is attracting attention as a next-generation transparent electrode material. After coating Ag-NW on the substrate, 2D-RuO2 was subsequently coated on the Ag-NW. Although there was a decrease in optical transmittance, the hybridization of 2D-RuO2 confirmed the effect of reducing sheet resistance. Furthermore, the flexibility of the fabricated transparent electrodes was also studied. It was confirmed by the change in sheet resistance after bending. The additional coating of 2D-RuO2 improved the flexibility of the transparent electrodes.

Deterioration Diagnosis and Petrogenesis for Rock Properties of the Stone Lantern in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석등의 훼손도 진단 및 기원암의 성인적 해석)

  • Lee, Myeong Seong;Yi, Jeong Eun;Pyo, Su Hee;Song, Chi Young;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.5-18
    • /
    • 2005
  • Rock materials of the Stone Lantern in the Gwanchoksa temple was composed of dark grey granodiorite. This Stone Lantern is partly structural distortion as S-shape, especially, rocks of the upper supports and under the roof materials were highly deterioration due to the surface exfoliation, and strong secondary contaminations owing to the discoloration by oxidation of inserted iron plates between the rock properties, and white grey to dark black contaminants along the rain path way. Rock surface of the Stone Lantern occurred as partly green patches because of coated by algae, lichen and moss. This biological problems are need for cleaning and treatments. The Stone Lantern have to be considered to conservation method that can reduce weathering factors with long-term monitoring about environmental change for structural stability, surface degradation and mechanical weathering. Materials of the Stone Lantern and basement rocks of the area are consisted of same petrogenetic granodiotite based on occurrences, petrological and geochemical characteristics.

  • PDF

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.