• Title/Summary/Keyword: 화학구조 분석

Search Result 2,348, Processing Time 0.031 seconds

식품중의 발암성 물질 -니트로소 화합물-

  • 성낙주
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 1997.06b
    • /
    • pp.11-12
    • /
    • 1997
  • 니트로소디메틸아민이 발암성 물질이라는 것이 1954년 Barnes와 Magee에 의해 발견된 이래 이것이 지금까지 학자들에게 관심의 대상이 되고 있는 이유는 발암력이 강하여 극미량으로도 생체내에 암을 유발시킬 수 있을 뿐만 아니라, 대부분의 발암성 물질이 신체의 특정기관에 발암작용을 나타내는데 비해 이 물질은 신체의 여러 부위에 암을 유발시킬 수 있다는 점 그리고 이 물질이 햄, 소시지, 베이컨, 알코올음료, 김치 및 어류 가공품 등 어려 가지 식품에 널리 분포되어 있다는 사실 등을 들 수 있다. 니트로소 화합물은 구조로 보아 티트로소아민과 니트로소아미드로 구분되는데 전자는 제 2급 아연이 산화질소 유도체와 반응하여 생성된 니트로소 유도체이과 후자는 오소, 아미드 등이 치환된 니트로소 유도체로서 화학적인 성질이나 생물학적인 작용이 상이하다. 즉 니트로소아민은 식품에서 안정한 화합물인 반면에 대부분의 니트로소아미드는 불안정하다. 지금까지 연구된 바에 의하면 3백 여종의 니트로소 화합물에 대하여 동물실험을 행한 결과 발암성이 90% 이상 인정되었다. 식품 중 니트로소 화합물의 전구물질 중 질산염과 아질산염은 식품의 가공 저장 및 조리과정 중 니트로화의 된 전구물질인데 이는 육가공품의 색소고정, Cl. Botulinum에 의한 식중독 방지 및 풍미의 향상을 위하여 수 세기 동안 식품첨가제를 사용되어 왔으며, 유럽이나 미국 등지에서는 아직도 육가공품에 아질산염의 첨가가 논란의 대상이 되고 있다. 식품 중 니트로소 화합물에 대한 북유럽 식품 3천여 점을 분석한 결과 검출된 니트로소 화함물은 니트로소디메틸아민이 대부분이며 맥주에서 66%로 검출률이 가장 높았고 다음으로 염지육 및 치즈의 순 이었다. 조리한 일본산 해산 식품 중에 니트로소디메틸아민이 최고 313$\mu$g/kg, 캐나다산 해산 건조 식품에서는 67$\mu$g/kg, 홍콩산 염건어에는 1,400 $\mu$g/kg , 훈연어류에는 N-nitrosothiazolidine이 13,700 $\mu$g/kg , 우리 나라 해산 식품 중 니트로소디메틸아민은 건조가오리, 동결건조명태, 건조오징어, 굴비 및 소건새우 등에서 2.8~86.0 $\mu$g/kg 으로서 비교적 높은 양이 검출되었을 뿐 아니라 이들 식품을 조리할 경우 3.6~13배 증가하였다. 또한 김치와 젓갈류 중에서도 니트로소디메틸아민이 검출된다는 연구가 있다. 식품 중 니트로소 화합물의 생성율 억제시키기 위하여 최근 20여년간 연구된 바를 요약하면 아스코르브산과 같은 억제제의 첨가, 가공방법 및 조리방법의 개선이 비교적 바람직한 방법으로 인정되고 있다. 위의 방법을 적용하여 베이컨을 조리한 결과 낮은 온도에서 오랜 시간 가열하는 것이 높은 온도에서 짧은 시간 가열한 것보다 니트로화 반응이 훨씬 낮았고 또 마이크로웨이브로 조리하는 것이 니트로소아민을 최소화 시키는 방법이었다. 염지육은 아스코르브산이나 토코페롤 등의 니트로화 억제제를 첨가할 경우 니트로소 화합물이 현저히 감소 하였는데 이는 산화질소의 소거 능력이 우수하기 때문인 것으로 밝혀졌다. 가공방법의 개선으로서는 가공시 식품을 공기에 노출시킬 경우 특히 직화로 가열된 공기에 노출되면 니트로소아민의 생성이 매우 높은 것으로 보고되어 있는데 그 대표적인 예로 맥아를 직화로 건조할 경우 맥주 중에 니트로소 화합물이 훨씬 높은 양이 검출된다고 보고되어 있다. 대체로 식품의 가공 조리 및 저장 중 니트로소화합물에 대한 메커니즘은 상세히 밝혀져 있으나 생체내에서의 생성이나 억제 등에 대한 연구는 아직도 미흡한 실정이라이 분야에 대한 연구가 절실히 요구된다.

  • PDF

Petrology of the Cretaceous Volcanic Rocks in the Hampyeong Area (함평지역 백악기 화산암류에 대한 암석학적 연구)

  • Cho, Dong-Hyun;Yun, Sung-Hyo;Koh, Jeong-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-114
    • /
    • 2009
  • Lithological and petrochemical characteristics and tectonic setting of the Cretaceous volcanic rocks in Hampyeong area located in the southwestern part of Okchon Zone, were studied by field survey and petrochemistry of major, trace, and rare earth elements. The $SiO_2$contents of the volcanic rocks range from 50.8 to 77.2wt.%. With increasing $SiO_2$, $Al_2O_3$, $Fe_2O_3\;^T$, $TiO_2$, MnO, CaO and MgO contents decrease and $K_2O$content increase, but $Na_2O$content is scatter to the trend. According to TAS and AFM diagrams, the Cretaceous volcanic rocks are calc-alkaline series. On the discrimination diagram of $K_2O$versus $SiO_2$, the volcanic rocks belong to high-K rocks series. The trace element compositions and REE patterns of the volcanic rocks, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate that they are typical of continental margin arc calc-alkaline volcanic rocks associated with the subduction environment. The ratios of Ba/Ta and Ba/La indicate that they are associated with volcanic arc-related magmatism. The Cretaceous volcanic rocks in Hampyeong area might be located in the Eurasian continental margin, related to the Pacific type tectonic environment during the Cretaceous times.

Study on the Spray Control of Mixed Fuel Using Flash Boiling (감압비등을 이용한 혼합연료의 분무제어에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1005-1013
    • /
    • 2010
  • This study was conducted to assess the spray control of flash boiling with mixed fuel in consideration of HCCI (Homogeneous Charge Compression Ignition) engine condition. Mixed fuel existing in two phase regions can control the process of mixture formation under low temperature and density by using the spray resulting from flash boiling which is able to induce rapid evaporation of fuel spray as well as the evaporation of high boiling point component. Because HCCI engine injects the fuel early under ambient conditions, it can facilitate the chemical control of ignition combustion and physical control such as breakup and atomization of liquid fuel by flash boiling of mixed fuel which consists of highly ignitable light oil and highly volatile gasoline. This study was conducted by performing video processing after selected composition and molar fraction of the mixed fuel as major parameters and photographed Schlieren image and Mie scattered light corresponding to the flash boiling phenomenon of the fuel spray that was injected inside a constant volume vessel. It was found that flash boiling causes significant changes in the spray structure under relatively low temperature and density. Thus, we analyzed that the flash boiling spray can be used for HCCI combustion by controlling the mixture formation at the early fuel injection timing.

Petrological Characteristics and Deterioration State of Standing Buddha Statue in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석조미륵보살입상의 암석학적 특성과 풍화훼손도)

  • Yun, Seok-Bong;Kaug, Yean-Chun;Park, Sung-Mi;Yi, Jeong-Eun;Lee, Chan-Hee;Choi, Seok-Won
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.629-641
    • /
    • 2006
  • The Standing Buddha Statue in the Gwanchoksa temple consists of medium to coarse grained biotite granodiorite with dark grey color, and it has a week gneissosity along the pegmatite veins. The results of magnetic susceptibility and geochemical patterns of the host rock of Standing Buddha Statue and the basement rock suggest that both values are formed from the co-genetic magma with the same differentiation process. The CIAs of the basement rock and the Standing Buddha Statue are calculated to 51.43 and 50.86, and the WPIs are estimated 4.52 and 8.95, respectively. So the weathering potential from the host rock of Standing Buddha Statue and basement rock prove to be high. The Standing Buddha Statue is terribly damaged with physical weathering from deterioration and exfoliation, and are scattered with secondary pollutant and precipitate. Basement rock is also in danger of ground collapse because of irregularly developed discontinuity system. Most surface of Standing Buddha Statue is seriously discolored into yellowish brown and dark gray, or black precipitates are also formed. Moreover, it is heavily covered with crustose lichen, fungi and algae, or moss are also found. In order to control the influential factors with the complex deterioration of Standing Buddha Statue, it is needed to rearrange a site environments, and conservation scientific management is required to protect it from covering lichens, exfoliations and fractures.

Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite (저밀도 폴리에틸렌 나노복합재료의 제조 및 특성)

  • Moon, Sung-Chul;Jung, Hyo-Sun;Lee, Jae-CHul;Hong, Jin-Who;Choi, Jae-Kon;Jo, Byung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about $80^{\circ}C$ compared with pure LDPE. When the organo-clay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process (인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과)

  • Seong, Du-Ri;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.466-473
    • /
    • 2020
  • Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.

The phenomenological study of self-management intervention among breast cancer survivors: Non-pharmacological approaches (유방암 생존자들의 자가관리에 대한 현상학적 연구: 비약물적 접근방법을 중심으로)

  • Heo, Seok-Mo;Heo, Narae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.270-284
    • /
    • 2016
  • The purpose of this study was to understand the essential structure and meaning of self-management intervention for breast cancer survivors by using non-pharmacological approaches. The study participants were 10 breast cancer survivors who were completing cancer treatment that involved surgery, chemotherapy, and radiation therapy. Data collected between August 2014 and February 2015 at E Hospital in S city were analyzed by using Colaizzi's phenomenological method. Outcomes were classified into seven essential themes: 1) application of comfort measures to alleviate ongoing symptoms, 2) movement to change physical conditions, 3) special herbal intake to prevent recurrence, 4) a specially designed diet plan for health self-management, 5) constant awareness of complementary and alternative medicine, 6) unmet needs treated by one's own doctor's prescription, and 7) future life toward a nature-friendly environment. The study results contribute to a deeper understanding of self-management interventions in the daily lives of Korean breast cancer survivors. In addition, results provide an essential resource, based on actual self-management styles, that will help survivors to obtain guidance and participate in appropriate programs.

Solvent-Polymer Interactions for Stable Non-Aqueous Graphene Dispersions in the Presence of PVK-b-PVP Block Copolymer (PVK-b-PVP 블록 공중합체의 존재 하에서 안정한 비 수계 그래핀 분산액을 위한 용매-고분자 상호작용에 관한 연구)

  • Park, Kyung Tae;Perumal, Suguna;Lee, Hyang Moo;Kim, Young Hyun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.109-117
    • /
    • 2017
  • Poly(N-vinyl carbazole) (PVK) homopolymer, poly(4-vinylpyridine) (PVP) homopolymer, and PVK-b-PVP block copolymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and the polymers were used to prepare non-aqueous graphene dispersions with four different solvents, ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), and tetrahydrofuran (THF). $^1H-$ and $^{13}C-NMR$ spectroscopy, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) were carried out to confirm the chemical structure of the polymers. Stability of graphene dispersions was measured by on-line turbidity measurement. Time-dependent Turbiscan Stability Index (TSI) values were interpreted in terms of surface tension (${\sigma}$) and solubility parameter (${\delta}$) among solvents, polymers, and graphene. It was confirmed that the solubilities of polymer and surface tension between solvent and graphene affected the dispersion stability of graphene. PVK-b-PVP block copolymer could effectively maintain the low TSI values of graphene dispersions in ethanol and THF, which have been known as poor solvents for graphene dispersions. It can also be noted that DCM shows good dispersion stability comparable to NMP, which has been known as the best solvent for graphene dispersion.

Late Pleistocene Unconformity in Tidal-Flat Deposit of Gyeonggi Bay, Western Coast of Korea (한국 서해 경기만 조간대 퇴적층의 후기 플라이스토세 부정합)

  • Jung, Hoi-Soo;Yoo, Hai-Soo;Seo, Jung-Mo;Paeng, Woo-Hyun;Lim, Dhong-Il
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.657-667
    • /
    • 2003
  • Deep-drilled core sampling and high-resolution seismic survey were carried out to identify a Holocene-late Pleistocene boundary in Gyeonggi Bay, western coast of Korea. Analysis of core sections revealed the existence of an oxidized and semi-consolidated sediment layer, Iying immediately below a Holocene horizon (Unit I) and being developed at the top of a late Pleistocene deposit (Unit II). The oxidized sedimentary layer (uppermost part of Unit II) is characterized by semi-consolidated, yellowish sediments showing signs of desiccation and alteration such as high N value, low water content, periglacial cryogenic structure, depletion of smectite, and high geochemical weathering index (Ba/Sr ratio). This feature, together with radiocarbon ages, suggests that the layer has formed as a result of prolonged subaerial exposure of Unit II sediments during the late Wisconsin sea-level lowstand, producing a regional unconformity. Such unconformitic-bounding surface corresponds to a prominent near-surface reflector (R), which is observed in seismic profiles obtained across the drilled-core sections in the study area. Consequently, the buried oxidized-sedimentary layer associated with the seismic reflector possibly plays a key horizon for the understanding of late Quaternary environmental changes as well as evidence of the emergence of the Yellow Sea shelf during the late Wisconsin sea-level lowstand.