• Title/Summary/Keyword: 화질 측정 방법

Search Result 227, Processing Time 0.026 seconds

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

Analysis of Contrast Medium Dilution Rate for changes in Tube Current and SOD, which are Parameters of Lower Limb Angiography Examination (하지 혈관조영검사 시 매개변수인 관전류와 SOD에 변화에 대한 조영제 희석률 분석)

  • Kong, Chang gi;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.603-612
    • /
    • 2020
  • This study has a purpose to look into the effect of the relationship between the Tube current (mA) and SOD(Source to Object Distance), which is a parameter of lower limb angiography examination, and the dilution rate of the contrast medium concentration (300, 320, 350) on the image. To that end, using 3 mm vessel model water phantom, a vessel model custom made in the size of peripheral vessel diameter, this study measured relationships between change of parameters, such as tube current (mA), SOD and varying concentrations (300, 320, 350) of contrast medium dilution into SNR and CNR values while analyzing the coefficients of variance(cv<10). The software used to measure SNR and CNR values was Image J 1.50i from NIH (National Institutes of Health, USA). MPV (mean pixel value) and SD (standard deviation) were used after verifying numerically the image signal for region of interest (ROI) and background on phantom from the DICOM (digital imaging and communications in medicine) 3.0 file transmitted to PACS. As to contrast medium dilution by the change of tube current, when 146 mA and 102 mA were compared, For both SNR and CNR, the coefficient of variation value was less than 10 until the section of CM: N/S dilution (100% ~ 30% : 70%) but CM: N/S dilution rate (20%: 80% ~ 10% : 90%) the coefficient of variation was 10 or more. As to contrast medium dilution by concentration for SOD change, when SOD's (32.5 cm and 22.5 cm) were compared,For both SNR and CNR, the coefficient of variation value was less than 10 until the section of CM: N/S dilution (100% ~ 30% : 70%) but CM: N/S dilution rate (20%: 80% ~ 10% : 90%) the coefficient of variation was 10 or more. As to contrast medium dilution by concentration for SOD change, when SOD's (32.5 cm and 12.5 cm) were compared,For both SNR and CNR, the coefficient of variation value was less than 10 until the section of CM: N/S dilution (100% ~ 30% : 70%) but CM: N/S dilution rate (20%: 80% ~ 10% : 90%) the coefficient of variation was 10 or more. As a result, set a low tube current value in other tests or procedures including peripheral angiography of the lower extremities in the intervention, and make the table as close as possible to the image receiver, and adjust the contrast agent concentration (300) to CM: N/S dilution (30%: 70%). ) Is suggested as the most efficient way to obtain images with an appropriate concentration while simultaneously reducing the burden on the kidney and the burden on exposure.

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF

The Study on the Reduction of Patient Surface Dose Through the use of Copper Filter in a Digital Chest Radiography (디지털 흉부 촬영에서 구리필터사용에 따른 환자 표면선량 감소효과에 관한 연구)

  • Shin, Soo-In;Kim, Chong-Yeal;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.223-228
    • /
    • 2008
  • The most critical point in the medical use of radiation is to minimize the patient's entrance dose while maintaining the diagnostic function. Low-energy photons (long wave X-ray) among diagnostic X-rays are unnecessary because they are mostly absorbed and contribute the increase of patient's entrance dose. The most effective method to eliminate the low-energy photons is to use the filtering plate. The experiments were performed by observing the image quality. The skin entrance dose was 0.3 mmCu (copper) filter. A total of 80 images were prepared as two sets of 40 cuts. In the first set (of 40 cuts), 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of signal + noise image set. In the second set of 40 cuts, 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of non-signal image (noisy image) with random location of diameter 4 mm and 3 mm thickness of acryl disc for ROC signal at the chest phantom. P(S/s) and P(S/n) were calculated and the ROC curve was described in terms of sensitivity and specificity. Accuracy were evaluated after reading by five radiologists. The number of optically observable lesions was counted through ANSI chest phantom and contrast-detail phantom by recommendation of AAPM when non-filter or Cu filter was used, and the skin entrance dose was also measured for both conditions. As the result of the study, when the Cu filter was applied, favorable outcomes were observed on, the ROC Curve was located on the upper left area, sensitivity, accuracy and the number of CD phantom lesions were reasonable. Furthermore, if skin entrance dose was reduced, the use of additional filtration may be required to be considered in many other cases.

  • PDF

A Study of Image Quality Improvement Through Changes in Posture and Kernel Value in Neck CT Scanning (경부 CT검사 시 Kernel 값과 검사자세 변화를 통한 화질개선에 관한 연구)

  • Kim, Hyeon-Ju;Chung, Woo-Jun;Cho, Jae-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2011
  • There is a difficulty because of classifying the anatomical structure in the neck CT scan by the beam hardening artifact no more than disease and it including the 6, 7 number cervical spine and intervertebral disk. In case of enforcing the neck CT scan cause of the inner diameter of beam artifact tried to be inquired by the image evaluation according to the change of the image evaluation according to the direction of the shoulder joint applying the variation method of a posture and location and Kernel value and it was most appropriate, the lion tax and Kernel value try to be searched for through an experiment. Somatom Sensation 16 (Siemens, Enlarge, Germany) equipment was used in a patient 30 people coming to the hospital for the neck CT scan. A workstation used the AW 4.4 version (GE, USA). According to a direction and location of the shoulder joint, the patient posture gave a change to the direction of the shoulder joint as the group S it gave a change as three postures and placed the both arms comfortably and helps a group N and augmented unipolar left in the wealthy merchant and group P it memorized the both hands and ordered the eversion and drops below to the utmost and enforced a scan. By using a reconstructing method as the second opinion, it gave and reconstructed the Kernel value a change based on scan data with B 10 (very smooth), B 20 (smooth), B 30 (medium smooth), B 40 (medium), B 50 (medium sharp), B 60 (sharp), and B 70 (very sharp). By using image data which gave the change of the examination posture and change of the Kernel value and are obtained, we analyzed through the noise value measurement and image evaluation of. The outside wire eversion orders the both hands and the examination posture is cost in the neck CT scan with the group P it drops below to the utmost. And in case of when reconstructing with B 40 (medium) or B 50 (medium sharp) being most analyzed into the inappropriate posture and Kernel value and applying the Kernel value to a clinical, it is considered to be very useful.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Comparison of Blinking Patterns When Watching Ultra-high Definition Television: Normal versus Dry Eyes (초고선명 텔레비전 시청 시 정상안과 건성안에서의 눈깜박임 양상 비교)

  • Kang, Byeong Soo;Seo, Min Won;Yang, Hee Kyung;Seo, Jong Mo;Lee, Sanghoon;Hwang, Jeong-Min
    • Journal of The Korean Ophthalmological Society
    • /
    • v.58 no.6
    • /
    • pp.706-711
    • /
    • 2017
  • Purpose: To analyze blinking patterns when watching an ultra-high definition (UHD) television and to compare the results between normal eyes and dry eyes. Methods: A total of 59 participants aged from 13 to 69 years were instructed to watch a colorful and dynamic video on a UHD television for 10 minutes. Before and after watching the UHD television, we measured the best corrected visual acuities, autorefraction, tear-break-up-time, degree of corneal erosion and conjunctival hyperemia via slit lamp biomicroscopy. In addition, questionnaires for the evaluation of eye fatigue and symptoms of a dry eye were completed. The definition of dry eye syndrome was that the tear-break-up-time of one of the eyes was less than 5 seconds, conjunctival injection, or marked corneal erosion. The number of blinks and the duration of blinking were both measured and analyzed at the early and late phases of video-watching. Results: After watching the UHD television in the normal eye group, the tear-break-up-time was significantly decreased (p < 0.001) and the degree of corneal erosion was significantly increased (p = 0.023). However, the subjective symptoms of participants were not aggravated (p = 0.080). There were no significant differences in blinking patterns in the dry eye group. On the other hand, in the normal eye group, the mean blinking time was significantly increased (p = 0.030). Conclusions: Watching an UHD television changes the tear-break-up-time, degree of corneal erosion, and blinking pattern in normal eyes, which may increase the risk of dry eye syndrome.