전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿 변환, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 변환 및 특징 추출은 부가적인 처리 시간이 요구되는 단점이 있다. 반면에 최근의 딥러닝 모델은 종단간 학습으로 특징 추출 과정없이 직접 원시 데이터를 활용한다. 그러나, 딥러닝의 문제는 연산 복잡도가 높다는 것이다. 이 문제는 단말기에 딥러닝 연산 모듈을 넣기가 어렵게 한다. 따라서 본 논문에서는 복잡도가 상대적으로 낮은 기계학습 기법중에 로지스틱회기 (logistic regression)를 이용하여 아크 검출을 하는 기법을 제안한다.
본 논문에서는 상황 인식 센서를 활용한 산불 감지 시스템을 제안한다. 기존 기상 및 비전 센서 기반의 산불 방재 시스템의 경우 카메라 센서로 획득한 영상을 조명변화에 강인한 색상공간인 HSI(Hue, Saturation, Intensity) 모형으로 변환시켜 처리하여 산불영역에 대한 특징을 추출하고 있다. 그러나 이 경우 단일 카메라 센서가 넓은 범위에 화재를 감지하기 때문에 넓은 범위의 화재가 발생하기 전까지는 화재발생을 감지하는데 어려움이 있다. 또한 복합적인 상황에서의 화재 감지가 힘들뿐만 아니라 별도의 지속적인 경계가 필요한 지역에 대한 설정이 어렵다. 따라서 본 논문에서는 센서를 활용하여 실시간으로 온도, 습도, Co2, 불꽃유무정보를 습득하고 이 데이터들을 복합적인 상황에 따라 비교, 분석하고 그에 따른 가중치를 부여하여 화재를 판단하는 알고리즘을 제안한다. 또한 화재 상태를 나누어 집중적인 화재 감지가 필요한 구역에 차별적인 관리가 가능하게 한다.
고층 빌딩에서 화재가 발생하는 경우 복잡한 구조로 인해 다양한 대피 통로가 존재하며 각 대피 통로의 안전성 여부를 파악하는 것이 어렵다. 고층 빌딩 화재 시 거주자들에게 신속히 탈출 경로를 제공하는 것이 필요하며 이를 위해서 대피 통로의 안정성 여부를 파악할 필요가 있다. 본 논문에서는 대피 통로의 안정성 여부 파악을 위해 영상을 분석하여 화재 시 발생하는 연기로 인한 대피 통로의 가시도를 측정하는 방법을 제안한다. 입력 영상에서 연기를 검출한 후 검출된 연기의 밀도를 알 수 있다면 가시도를 쉽게 측정할 수 있지만, 연기 검출이나 연기 밀도 측정에 관한 적절한 방법이 없어 이러한 접근법을 사용하기는 어렵다. 본 논문에서는 입력 영상에서 배경 영상을 추출하고 이를 학습 데이터로 하여 주성분 분석 학습을 한다. 이후 입력으로 주어지는 영상에서 배경 영상과 연기 영상을 추출하고 학습된 주성분 분석을 적용하여 새로운 특징 공간으로 사상한 후 변화량을 계산하여 연기로 인한 가시도를 측정한다.
전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 다양한 불규칙 아크 파형 때문에, 실제 환경에서는 아크 성능이 저하되는 문제가 있다. 따라서, 기존의 부족한 특징 데이터를 증가시켜, 성능을 개선하는 것이 요구된다. 본 논문에서는 입력신호를 변분 모드 분할을 통해 원신호를 분할한 후 통계적 특징을 추출한다. 변분 모드 분할으로부터 추출한 통계적 특징의 성능이 원신호로부터 얻은 특징보다 개선된 성능을 얻는다. 아크 분류기로 인공 신경망을 이용하고, 14,000개의 학습 데이터에 적용한 결과 VMD의 사용이 약 4%의 아크 검출 성능을 높혔다.
자연적이거나 인위적인 여러 요인의 복합적인 상호작용에 의해 지표는 계속 변화해간다. 자연재해는 생태계의 다양한 군집이 서로 상호작용을 하는데 결정적 영향을 미치는 요소로 이런 변화의 직접적인 원인이 되는 특정 사건의 발생과정이나 공간적 분포에 대한 연구는 환경과 자원관리 측면에서 중요하다. 본 논문에서는 지표변화에 영향을 미치는 자연화재의 경우를 중심으로 공간적 분포를 모형화하는 방법론을 설명하였다. 자연화재는 주로 번개에 의해 발생되어 몇 주에 결쳐 수만 킬로미터의 지역을 태우면서 새롭고 다양한 서식지를 만들어 가는 주된 자연재해중의 하나로 생태계관리차원에서 연구되고 있다. 오스트리아 빅토리아사막을 예로 이곳에서의 자연화재 발생지역을 20년동안의 원격탐사자료(MSS data)로부터 추출하여 이를 바탕으로 자연화재발생에 대한 공간적 모형을 개발하였고 모형에 입각한 시뮬레이션 방법을 논의하였다. 화재발생과정은 불규칙적으로 분포된 공간상의 point pattern에 의해 특징지어질 수 있는데 이의 모형화를 위해서 Nonhomogeneous Planar Poissin Process가 이용되었다.
본 논문에서는 화재 불꽃의 시각적 특징들을 확률적인 멤버십 함수로 모델링하고 이를 퍼지 유한상태 오토마타에 적용한 새로운 화재 불꽃 감지 알고리즘을 제안한다. 먼저 입력된 영상에서 배경모델을 이용하여 움직임 영역을 추출하고 불꽃 색상 모델을 적용하여 최종 화재 후보 영역을 결정한다. 불꽃영역은 일반적으로 연속적이며 불규칙한 패턴을 가지고 있으므로 명도와 웨이블릿 에너지의 왜도 값과 모션의 상승 방향성을 이용하여 확률모델을 생성하고 이를 퍼지 유한상태 오토마타에 적용한다. 퍼지 유한상태 오토마타는 오토마타의 성능과 퍼지 로직이 결합된 형태로 컴퓨터 시스템에서 불확실한 문제뿐 아니라 연속적인 공간에서 발생하는 문제를 처리하는 시스템적인 접근법을 제공한다. 제안된 알고리즘은 다양한 화재 영상에서 성공적으로 불꽃을 감지하였고 다른 알고리즘에 비해 더 좋은 성능을 보여주고 있다.
화염 및 연기 감지 알고리즘 연구는 다양한 모양, 빠른 확산 및 색상으로 인해 컴퓨터 비전에서 어려운 과제이다. 일반적인 센서 기반 화재 감지 시스템의 성능은 환경 요인(실내 및 화재발생 위치)에 따라 크게 제한된다. 이러한 문제를 해결하기위해 딥러닝 방법을 적용하였으며, 이것은 물체의 형상을 특징으로 추출하므로 비슷한 형상이 프레임내에 존재하면 오탐으로 검출 될 수 있다. 본 연구는 화재 오탐 검출 개선을 위해 딥런닝 사용 전과 후에 프레임 유사성을 이용하여 오탐을 줄이는 새로운 알고리즘을 제안한다. 실험결과 제안된 방법을 적용하여 화재 검출 성능은 유지를 하면서 오탐 부분이 최소 30% 까지 감소하는 결과를 얻을 수 있었다. 제안된 방법의 오탐 검출 성능이 뛰어나다는 것을 확인하였다.
전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿 변환, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 변환 및 특징 추출은 부가적인 처리 시간이 요구되는 단점이 있다. 반면에 최근의 딥러닝 모델은 종단간 학습으로 특징 추출 과정없이 직접 원시 데이터를 활용한다. 따라서, 1-D 시간 신호를 직접 활용하여 아크를 검출하는 것이 좋은데, 인공신경망의 분류 성능이 저하되는 문제점이 있다. 본 논문에서는 연속 입력 1-D 신호를 2-D로 변환한 후에, 합성곱신경망으로 분류하는 방법을 제안한다. 실험 데이터에 적용한 결과 합성곱신경망의 사용이 인공신경망보다 약 8.6%의 아크 분류 성능을 향상시켰다. 또한 2-D 데이터의 부족을 보완하기 위해서 데이터증강을 이용하여, 14%의 분류 성능을 개선하였다.
본 논문에서는 상황 인식 센서를 활용한 화재 발생 예측 및 탐지 방법을 제안한다. 기존 기상 및 비전 센서 기반의 산불 방재 시스템의 경우 카메라 센서로 획득한 영상을 조명변화에 강인한 색상공간인 HSI(Hue, Saturation, Intensity) 모형으로 변환시켜 처리하여 산불영역에 대한 특징을 추출하고 있다. 그러나 이 경우 단일 카메라 센서가 넓은 범위에 화재를 감지하기 때문에 넓은 범위의 화재가 발생하기 전까지는 화재발생을 감지하는데 어려움이 있다. 따라서 본 논문에서는 센서를 활용하여 실시간으로 온도, 습도, Co2, 불꽃유무정보를 습득하여 화재를 판단하는 알고리즘과 그에 따른 화재의 확산경로와 속도예측 및 안전구역 확보 알고리즘을 제안한다. 제안된 알고리즘은 복합적 인 상황에 따라 부여된 가중치를 수집된 데이터에 부여하여 화재를 판단하고, 시간에 따른 상황인식 분석을 통해 화재 이동방향과 속도를 예측하여 안전구역을 확보하는 기법이다.
화재원인물질을 규명하기 위해 화재현장에서 수거된 물을 포함한 증거물로부터 석유류를 용매추출하여 기체크로마토그래피법으로 분석하였다. 다량의 수분을 포함한 증거물에서 석유류를 추출하기 위해, HPLC 용 n-hexane을 10.0 mL를 가하여 30분간 흔들어준 다음 일정시간 방치한 후 n-hexane 층을 분리하고 기체크로마토그래피에 주입하여 크로마토그램을 얻었다. 얻어진 시료의 크로마토그램과 시너, 휘발유, 난방용 등유, 보일러 등유 및 경유를 n-hexane에 첨가하여 만든 인공시료의 크로마토그램과 비교하였다. 시료의 크로마토그램은 비교적 끓는점이 낮은 시너와 휘발유의 크로마토그램과 확연히 차이가 났으며, 난방용 등유와 보일러용 등유는 머무름 시간에 따라 다른 피크 패턴을 보였다. 이에 비해 경유의 크로마토그램과는 유사한 피크패턴을 보였고, 시료에 일정량의 경유를 첨가한 후 측정한 시료의 크로마토그램에서는 특징적인 피크의 면적이 증가하는 현상을 관찰할 수 있어 시료에 포함된 석유류가 경유라고 예측할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.