• Title/Summary/Keyword: 화재 예측 및 감지

Search Result 26, Processing Time 0.02 seconds

Test Method Using Shield-cup for Evaluating Response Characteristics of Fire Detectors (화재감지기의 응답특성 평가를 위한 Shield-cup이 적용된 시험방법)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.36-44
    • /
    • 2020
  • It is necessary to predict the activation time of fire detectors accurately to improve the reliability for evaluating the required safe egress time (RSET) in performance-based fire safety design. In this study, problems of the plunge test, which is widely applied in assessing fire detectors, were examined through experiments and numerical simulations. In addition, a new shield-cup test method was proposed to address these problems. A fire detector evaluator (FDE) developed in a previous study was applied to ensure measurement accuracy and reproducibility. During the plunge tests, a significant measurement error was observed in the activation time of the smoke detector because of the rapid flow change when the detector was input. However, during the shield-cup tests, slight changes occurred in the flow inside the FDE when the detector as exposed to smoke. In conclusion, the proposed shield-cup test method is expected to be useful for evaluating the response characteristics of fire detectors more accurately in simulated fire environments.

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

DB Construction of Activation Temperature and Response Time Index for Domestic Fixed-temperature Heat Detectors in Ceiling Jet Flow (천장제트기류에 대한 국내 정온식 열감지기의 작동온도 및 반응시간지수(RTI)에 관한 DB 구축)

  • Yoon, Ga-Yeong;Han, Ho-Sik;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • The accurate prediction of fire detector activation time is required to ensure the reliability of fire modeling during the safety assessment of performance-based fire safety design. The main objective of this study is to determine the activation temperature and the response time index (RTI) of a fixed heat detector, which are the main input factors of a fixed-temperature heat detector applied to the fire dynamics simulator (FDS), a typical fire model. Therefore, a fire detector evaluator, which is a fire detector experimental apparatus, was applied, and 10 types of domestic fixed-temperature heat detectors were selected through a product recognition survey. It was found that there were significant differences in the activation temperature and RTI among the detectors. Additionally, the detector activation time of the FDS with the measured DB can be predicted more accurately. Finally, the DB of the activation temperature and RTI of the fixed-temperature heat detectors with reliability was provided.

자동화재감지 로봇 시스템에 관한 연구

  • 김원정;고준환;이상돈;김영민;양승용;안형일;김응식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.94-100
    • /
    • 2000
  • 97년 일본 로봇공업협회에서 발표한 자료에 의하면 21세기말에는 로봇산업이 자동차 시장규모에 육박하는 거대산업으로 발전하리라 예측하고, 그중 비제조분야의 로봇이 50%를 차지할 것으로 전망하고 있다. 현재 국내는 아직 비제조업, 비산업용 로봇 연구가 미약한 단계이다. 다만, 의료, 휴먼로봇에 대한 연구는 진행되고 있으나, 화재, 소방, 및 안전분야에서는 거의 전무한 상태이다. 몇몇 선진국에서는 화재, 소방, 및 안전분야 로봇에 대한 연구가 활발히 이루어지고 있고, 벌써 시제품이 출현하고 있다. (중략)

  • PDF

Prediction of Wildfire Spread and Propagation Algorithm for Disaster Area (재난 재해 지역의 산불 확산경로와 이동속도 예측 알고리즘)

  • Koo, Nam-kyoung;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1581-1586
    • /
    • 2016
  • In this paper, we propose a central disaster monitoring system of the forest fire. This system provides the safe-zone and detection to reduce the suppression efforts. In existing system, it has a few providing the predicting of wildfire spread model and speed through topography, weather, fuel factor. This paper focus on the forest fire diffusion model and predictions of the path identified to ensure the safe zone. Also we have considering the forest fire of moving direction and speed for fire suppression and monitering. The proposed algorithm could provide the technique to analyze the attribute information that temperature, wind, smoke measured over time. This proposed central observing monitoring system could provide the moving direction of spred out forecast wildfire. This observing and monitering system analyze and simulation for the moving speed and direction forest fire, it could be able to predict and training the forest fire fighters in a given environment.

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

Prediction of Fire Spread and Real-Time Evacuation System according to Spatial Characteristics (공간적 특성에 따른 화재 확산 예측 및 실시간 대피 시스템 연구)

  • Nam-Gi An;Geon-Hui Lee;Min-jeong Kim;Kyu-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • Among the fire incidents in Korea over the past decade, building fires are the most common, and property and human casualties are the most common. However, the existing fire fighting system does not only inform the location of emergency exits and guide safe routes to help casualties evacuate smoothly. A system was proposed to help successful evacuation by distinguishing vertical and horizontal characteristics using spatial characteristics. In this study, an effective evacuation system was proposed by predicting fires using temperature detection sensors and smoke sensor values, and calculating the optimal evacuation path through the Dijkstra algorithm.

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex (복합영상관 단일 가연물의 디자인 화재곡선 평가)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong;Oh, Chang Bo;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.18-27
    • /
    • 2020
  • An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).