• Title/Summary/Keyword: 화재 연기

Search Result 768, Processing Time 0.032 seconds

A fundamental study on the jet fan capacity for smoke control considering thermal buoyancy force in tunnel fires (터널 화재 시 열부력을 고려한 제연용 제트팬 용량산정에 관한 기초 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Jo, Jong-Bok;Lee, Seung-Chul;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.501-511
    • /
    • 2018
  • As a result of the recent revision of the 'Guideline for Installation and Management of Fire Prevention Facility in Road Tunnels', the thermal buoyancy has to be taken into account when calculating the capacity of jet fans for smoke control in tunnel fires. However, there is no detailed methodologies for considering thermal buoyancy, so further study is needed. In this study, the thermal buoyancy in the tunnel is calculated by 3-D numerical simulation to consider the thermal buoyancy in case of fire in tunnels, and the relationship between heat buoyancy and vehicle drag, And the method of calculating the capacity of the jet fan for smoke control in tunnels. According to the analysis results, heat buoyancy acts as a resistance force in the case of a down-slope tunnel, and the pressure rise of jet fan for smoke control is not simply determined by the value of heat buoyancy at the entrance of the tunnel and the value of the vehicle drag at the exit. And it is analyzed that it is necessary to carry out a comprehensive review according to the location of the fire vehicle in tunnels.

A Study on the Application of the Regulation of the Interior Materials in Entertainment Occupancy (다중이용업소의 내장재 규정의 적용에 관한 연구)

  • 이주헌;윤명오;김운형
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.100-107
    • /
    • 2001
  • A Interior material, a main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Nonetheless, it has been used recklessly with undue attention to its contribution to fire in particular in entertainment occupancy and causes many victims in fire. Therefore, this study attempts to examine the current use of interior material in Korea and find out what to be improved and enhanced in terms of related regulations. Based on the comparison and analysis of the Korea regulation with those of advanced nations, suggestions are made for an effective and efficient improvement and complement to the current system. What can be suggested from this study are as follows. The use of interior material should be controlled under the unified regulation of fire-safety codes. Code should be set up so that the current construction enforcement should be applied in retroactive to those entertainment buildings that obtained a license prior to the implementation of the system certifying that the building is fire-resistant and fire-protective. The legislation should be made to control the fire-protection facilities of small-sized, underground entertainments. It should be obliged to present the blueprint displaying the use of interior material at the time of changing occupancy. Or, it should be compelled to report changes that go way without permit to the administrative office. A compulsory provision should be set up to have a fire-resistant performance to movable furniture. The classification index designating the fire hazard of interior material by flame spread rate and smoke toxicity and its test method should be established.

  • PDF

Numerical Study on the Smoke Movement and Evacuation in the Deeply Underground Subway Station Fire (대심도 지하역사에서의 화재시 연기거동과 피난에 대한 수치해석 연구)

  • Kim, Hong-Jin;Bae, Sung-Yong;Choi, Young-Ki;Hong, Gi-Bae;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1342-1347
    • /
    • 2011
  • Advantages of the deeply underground subway are underground space efficiency, high speed, decrease of noise and vibration. However, when fire occurs in the deeply underground subway station, large casualties are occurred like Daegu subway station fire due to the increase of evacuation distance. In this study, a numerical analysis was performed by using the fire and evacuation analysis program FDS+EVAC for smoke movement and evacuation in Beotigogae station among the deeply underground subway station. Heat release rate of carriage fire was set 10MW and the fire growth rate was ultrafast. As a result, the smoke move to the exit at 1085 second. The total evacuation time took 956 second.

  • PDF

Development of a precision smoke particle detector to sense a fire in early state (초기화재 감지를 위한 정밀한 연기 입자 감지 장치 개발)

  • 김희식;김영재;이호재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1734-1737
    • /
    • 1997
  • The conventional fire detection devices are operated after a processed fire phase, which are sensing only a high density of somke level or high temperature heat. They are not so precision to detect a fire in the early phase to protect the facility form the fire. We need to develope a new high precision smoke detection system to keep expensive industrial facilities most reliably form fire. A new optical precision smoke detection system was developed. It monitors very low level density of smoke particles in the air. It is operated continously through many years without a stop or any malfunction. The developed precision smoke detection system will be installed in important industrial facilities, such as power plants, underground common tunnel, main control rooms, computer rooms etc.

  • PDF

Numerical Prediction of the Heat and Smoke Propagations for a Passenger Train Fire in an Underground Subway Tunnel for Different Extraction Flowrate (지하철 터널 내 운행 중 객차에서 화재발생시 제연풍량에 따른 열 및 연기 확산 예측 연구)

  • Chang, Hee-Chul;Yoon, Kyung-Beom;Park, Lee-Jin;Kim, Tae-Kuk;Park, Won-Hee;Kim, Dong-Hyeon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.250-253
    • /
    • 2007
  • The purpose of this research is focussed on the numerical predictions of the heat and smoke propagations for a passenger train fire in an underground subway tunnel for different air supply and extraction flowrates. The analysis is performed for one of the stations on subway line #5 in Seoul under the emergency operation mode for different air supply and extraction flowrates. Five different the air supply and extraction flowrates are considered for the numerical analyses. The numerical results show that the air supply and extraction flowrates affect the smoke control performance significantly by improving the smoke removal performance for the balanced control of air supply and smoke extraction and for the unbalanced control with lager smoke extraction than air supply.

  • PDF

A NUMERICAL STUDY OF THE VENTILATION AND FIRE SIMULATION IN A ROAD TUNNEL (도로터널 환기/제연 시스템 시뮬레이션)

  • Park Jong-Tack;Won Chan-Shik;Hur Nahmkeon;Cha Cheol-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.207-212
    • /
    • 2005
  • In designing a ventilation system of a road tunnel, a possibility of using the system as a smoke control system in case of a tunnel fire has to be considered. In the present study, a numerical simulation on ventilation system is performed considering jet fan operations and moving traffic. A fire-mode operation by reversing some fan operations in case of a tunnel fire is also simulated. The results show that ventilation operation can control the pollutants effectively, and fire-mode operation can control smoke and temperature effectively to prevent a disaster.

  • PDF

A Study on Flame and Smoke Detection Method of a Tunnel Fire (터널 화재의 화염 및 연기 검출 기법 연구)

  • Lee, Jeong-Hun;Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1027-1028
    • /
    • 2008
  • In this paper, we proposed image-processing technique for automatic real-time fire and smoke detection in tunnel fire environment. To minimize false detection of fire in tunnel we used motion information of video sequence. And this makes it possible to detect exact position of event in early stage with detection, test, and verification procedures. In addition, by comparing false detection elimination results of each step, we have proved the validity and efficiency of proposed algorithm.

  • PDF

Study on Flow and Smoke Behaviors on in Longitudinal Tunnel (장대 터널에서의 배연방식에 따른 기류 및 연기거동 연구)

  • Kim, Won-Tae;Choi, Man-Yong;Park, Jeong-Hak;Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1521-1527
    • /
    • 2009
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for the logitudinal tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Through the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get the faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

A Numerical Study of Smoke Movement by Fire In Atrium Space (화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 -)

  • 노재성;유홍선;정연태
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

A Study on the Formation of Smoke Layer and the Zone modelling in Compartment Fire (건물화재시 연기층 형성과 영역모델에 관한 연구)

  • 허만성
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.70-78
    • /
    • 1997
  • The objective of this research is to study on the upper and lower layer temperature, interface height and pressure in case of carpet, chair, trashcan and wardrobe fires in a residential room by performing the theoretical and experimental studies. The theoretical results of the upper and lower layer temperature, the interface height and the pressure were qualitatively well coincided with the experimental results. The uniformly distributed fire in case of carpet showed that the ignition and the initial growth period were relatively short while the fully developed period was considerably long. The concentrated fires such as the wardrobe showed that the ignitions and the initial growth periods were relatively long. The interface heights were around 1m as the steady state. However, at the time of the maximum temperature, the interface height was lowered to 0.5m from the floor. The pressure variation in the fire room ranged between 0.1mmAq and 0.4mmAq, and the temperature reached the highest while the pressure was maximum.

  • PDF