• Title/Summary/Keyword: 화재환기

Search Result 214, Processing Time 0.026 seconds

A Numerical Modeling of Smoke Behavior and Detection for Fire Developed in International Space Station (국제우주정거장 내부 화재시 연기거동 및 감지특성에 관한 수치 모델링)

  • Park, Seul-Hyun;Lee, Joo-Hee;Kim, Youn-Kyu;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.51-56
    • /
    • 2012
  • The onset of fire on the International Space Station (ISS) is a critical problem that can threaten the life of crew members onboard and thus instantaneous fire detection and extinguishment technology has been considered as one of the most important aspects in the ISS operation. In the present study, a numerical analysis was performed to better understanding of the characteristics of smoke behaviors and detection in a pressurized module of the ISS using the NIST Fire Dynamic Simulator (FDS). Numerical results indicate that the smoke flow patterns under zero-gravity condition are clearly different from those under normal gravity condition. In addition, the results obtained from numerical simulations coupled with the PM internal flows are expected to provide basic and useful information in designing the microgravity fire detection devices and establishing in fire response protocol for astronauts or the crew members.

Experimental Study on the Determination of Critical Velocity for the Case of Fire in Long Traffic Tunnels (장대 교통터널 화재시 임계속도 결정에 관한 실험적 연구)

  • Yoon Chanhoon;Yoon Sungwook;Yoo Yongho;Kim Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, scaled model tests were carried out to decide the optimal critical velocity, to prevent back layering in the case of fire in a long traffic tunnel. Realistic estimates were made for the time required for people to escape ken the tunnel and far the time required by the ventilation operator to increase the system speed to full capacity. The analysis, predicts that the emergency ventilation will start about 240 seconds after the tunnel fire. It was also found that prevention of back layering would occur within 4 minutes after fan operation. To find out optimal critical velocity, a 1/50 scaled model tunnel(diameter : 0.2 m and length : 20 m) based on the Froude similarity technique was constructed. Changing $\beta$ values in the Tetzner's equation, smoke propagation was observed. From the experiment, it was concluded that using a $\beta$ value of 0.5 to prevent back layering successfully allowed time for safe evacuation.

A Study on the Combustion Efficiency Concept in Under-ventilated Compartment Fires (환기부족 구획화재에서 연소효율 개념에 대한 고찰)

  • Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.145-152
    • /
    • 2010
  • A study on combustion efficiency concept was conducted for the under-ventilated fires in a fullscale ISO 9705 room. In particular, a comparison between global combustion efficiency (CE) measured outside the compartment and local CE measured at upper layer inside the compartment was focused. Heptane, toluene and iso-propanol were used to consider the wide ranges of heat of combustion and soot yield. As a result, the global CE was decreased linearly with increasing in global equivalence ratio (GER). On the other hand, the decreasing rate of local CE was increased gradually with increasing in GER. From these results, it was known that the information on local CE was very useful parameter to understand the fire phenomena inside the compartment. In addition, it was discussed that the local CE might be used as an important parameter in the process of scaling for the compartment fires.

A Prediction study on the Fire growth rate of Combustible for Fire Safety Assesment of PBD(1) (성능적인 화재안전성평가를 위한 주요가연물의 화재성장율 예측에 관한 연구(1))

  • Seo, Dong-Goo;Kim, Dong-Eun;Kim, Bong-Chan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.129-132
    • /
    • 2012
  • 본 연구는 건축물의 초기화재성상의 주요인자인 화재성장율 예측을 위하여, 일본 송산(松山)모델을 사용하여 예측값을 도출한 결과, 화재성장율은 $0.0144t^2$로 나타났다. 또한 이를 실규모실험(ISO-9705)와 FDS 해석값과 비교한 결과, $Q_{peak}$을 고려한다면 신뢰할 수 있다고 판단 할 수 있지만 약100초 이상의 결과에서는 환기인자 등에 관한 변수에 대한 고려가 필요할 것으로 판단된다.

  • PDF

Performance-Based Fire Modeling in the Nuclear Power Plants using FDS (FDS를 이용한 원전 성능기반 화재모델링 분석)

  • Cho, Sung-Min;Lee, Kyu-Bok;Ku, Hee-Kwon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.235-238
    • /
    • 2011
  • 본 논문에서는 원자력발전소 기기냉각해수격실 내 가연성 액체에 의한 화재를 가정하여 FDS 전산코드를 이용한 화재모델링 분석을 수행하였다. 특히 열방출률, 환기효과, 복사분율 등에 대한 입력변수 변경을 통해 보다 보수적인 화재시나리오 설정을 위한 환경조건을 확인하였다. 이 결과는 추후 실제 가동 중인 원자력발전소에 대한 성능기반 화재모델링 분석에 활용할 예정이다.

  • PDF

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.171-174
    • /
    • 2010
  • 도로터널에서의 미분무수 소화시스템의 적용 가능성을 검토하기 위해 실물 화재 실험을 수행하였다. 적용된 화원은 실물 승용차 화재와 유류화재를 모사한 화원면적 $1.4m^2$의 heptane pool 화재이며, 기존 도로터널에 설치된 저압 물분무 시스템과 고압 미분부수 소화시스템과의 냉각효과 비교실험을 수행하였다. 도로터널 내의 환기조건을 구현하기 위해 실물모형 터널의 한 편에 터널 유속(0.9~3.8 m/sec 범위) 발생장치를 설치하였으며, 화원에서 하류 방향으로 터널 내 온도분포를 측정하였다. 실험 결과 1/5의 유량을 사용하는 고압 미분무수 소화시스템은 저압 물분무 시스템과 동등한 수준의 냉각효과를 보였다.

  • PDF

An experimental study of smoke extraction efficiency along with ventilation building location in the mad tunnel (도로터널 내 환기소 위치별 방재 효율에 관한 실험적 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Yoon, Chan-Hoon;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • An experimental study was carried out on a reduced scale model tunnel to investigate the efficiency of disaster prevention at underground and ground ventilation equipments for the fire in road tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was manufactured. The vertical shafts that are used in the analysis of efficiency of disaster prevention are the two models that had considered when the real tunnels are designed and the amounts of smoke exhaust are applied the miniature of the real tunnels' smoke exhaust, 560 and $280\;m^3/s$. As the result of analysis, it is the possible the emissions of the entire quantity of CO gas through the vertical shafts. In the ground ventilation equipments, the concentration of CO is discharged 2.23~2,73 ppm smaller than the underground ventilation equipments. And the temperature rise in the ground ventilation equipments is $0.53{\sim}0.94^{\circ}C$ lower than in the underground ventilation equipments because of a cooling effect of the surface of the tunnel wall. As a result of analysis of CO concentration and the temperature rise in the modeling ventilation equipment, the position of ground ventilation equipment is more effective than the underground ventilation equipment in disaster prevention measures.

A Study on the Ventilation Performance and Fire Characteristics with Different Types of Openings in External Wall of One Side Corridor Type Apartment (편복도형 아파트의 복도 외벽체 개구부 형태에 따른 환기성능 및 화재특성에 관한 연구)

  • Ko, Myeong Jin;Choi, Do Sung;Do, Jin Seok
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.87-93
    • /
    • 2010
  • The objective of this study is to verify the safety in case of fire and change of residential environment for different wall construction approaches in a stairways apartment house. In order to confirm that case_1, which is current case that most of wall is opened and the case 2, which upper part of wall is limitedly opened are compared and analyzed based on simulations of fire, escape and natural ventilation performance. The analysis reveals that possible escape time for case 1 was more than 600 seconds and for case 2 was 195 seconds. Since the escape times for both cases were over 128 seconds, it would be reasonable to assume that every resident would escape. The simulation results on natural ventilation performance shows the air change per hour of case 1 and case 2 were .19n/h and .16n/h and there was 1.2 times difference. However, the difference was too insignificant and it could be seen as that different approaches on wall construction would not significantly influence on natural ventilation performance.

Prediction of the Fire Behavior According to the Fire Load in an Underground Life Space (화재하중에 따른 지하생활공간의 화재성상 예측)

  • Chae, Han-Sik;Suk, Chang-Mok;Kim, Ie-Sung;Lee, Ji-Hee;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.51-59
    • /
    • 2007
  • The purpose of this study is analyzing the fire behavior according to the fire load for G underground shopping mall located in Daegu city. when predict fire behavior, fire load and ventilation coefficient are important factor who dominate fire temperature or fire continuance time. Therefore, size of unit room, opening size and inflammable investigated on the field. Fire load calculated using unit calorific value by each material of inflammable that investigate. And reduction model experimented fire load about 6 models with variable. Fire behavior analyzed by heat flows of inside space that temperature rise and temperature change by time of fire source.