• Title/Summary/Keyword: 화재위험성 평가

Search Result 441, Processing Time 0.02 seconds

Risk Ranking Analysis for the City-Gas Pipelines in the Underground Laying Facilities (지하매설물 중 도시가스 지하배관에 대한 위험성 서열화 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.54-66
    • /
    • 2004
  • In this article, we are to suggest the hazard-assessing method for the underground pipelines, and find out the pipeline-maintenance schemes of high efficiency in cost. Three kinds of methods are applied in order to refer to the approaching methods of listing the hazards for the underground pipelines: the first is RBI(Risk Based Inspection), which firstly assess the effect of the neighboring population, the dimension, thickness of pipe, and working time. It enables us to estimate quantitatively the risk exposure. The second is the scoring system which is based on the environmental factors of the buried pipelines. Last we quantify the frequency of the releases using the present THOMAS' theory. In this work, as a result of assessing the hazard of it using SPC scheme, the hazard score related to how the gas pipelines erodes indicate the numbers from 30 to 70, which means that the assessing criteria define well the relative hazards of actual pipelines. Therefore. even if one pipeline region is relatively low score, it can have the high frequency of leakage due to its longer length. The acceptable limit of the release frequency of pipeline shows 2.50E-2 to 1.00E-l/yr, from which we must take the appropriate actions to have the consequence to be less than the acceptable region. The prediction of total frequency using regression analysis shows the limit operating time of pipeline is the range of 11 to 13 years, which is well consistent with that of the actual pipeline. Concludingly, the hazard-listing scheme suggested in this research will be very effectively applied to maintaining the underground pipelines.

A Study on a PCB Manufacturing Plant's Fire Risk Assessment due to the Mitigation of Fire Protection Zone and an Improvement Way through Estimation of Sprinkler Demand Water Flow Rate (방화구획 완화에 따른 PCB공장의 화재위험평가 및 스프링클러 요구살수유량 산정을 통한 기준개선안에 관한 연구)

  • Oh, Chan-Wook;Oh, Ryun-Seok;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.56-62
    • /
    • 2019
  • A sprinkler is a fire extinguishing equipment installed in a protected area where a detector or head detects a fire and automatically puts out the fire. However, the Ministry of Land, Infrastructure and Transport's "Regulations on Building Evacuation and Fire Protection Standards, etc." stipulate that fire compartment area should be reduced to three times by installing sprinkler facilities in the case of factories and warehouses. In this study, fire hazard was analyzed for a real PCB factory which mitigated the fire protection zone by sprinkler installation, and the head opening characteristics of sprinkler facilities through computer simulation, installation standards of sprinkler facilities, thermal performance, operating range, and the amount of water sprayed to identify the problems of operation of sprinkler facilities in case of fire, and to suggest the grounds such as required sprinkling flow rate for system improvement.

A Study of Explosion Risk Assessment for Designation of Dangerous Goods Transshipment Pier at Ulsan Port (울산항 위험물 환적부두 지정을 위한 폭발 위험성 평가에 관한 연구)

  • Kang, Min-Kyoon;Lee, Yun-Sok;Ahn, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.109-116
    • /
    • 2021
  • The explosion of a chemical tanker ship during cargo transshipment via double-banking at Ulsan Port, resulted in major damage including fires involving nearby ships. As a follow-up measure to prevent the recurrence of similar accidents, the 'Safety Management of Dangerous Goods in Port' was established, and the designation of a transshipment pier for dangerous goods is required given the risk of explosion and the impact on major facilities in the port. This study evaluated the Fire & Explosion Index of major transshipment cargoes in Ulsan Port to design a transshipment pier based on the Explosion Risk Assessment. Based on the results of Fire & Explosion Index evaluation of styrene monomer and benzene, severe explosion risk was confirmed, and the exposure radius was calculated. Based on the results of the exposure radius, the risk range for each major pier was calculated, and 12 terminals were proposed as transshipment pier candidates considering port facilities, surrounding dangerous facilities, and residential aspects. Since the results of the study suggest transshipment piers based on the risk radius alone, maritime traffic safety, pier and mooring facilities, safety facilities and accessibility for emergency response should be considered comprehensively to designate actual transshipment piers.

Analytical Study of Fire Resistance Performance of Plant Facilities using Ansys (Ansys를 활용한 플랜트 시설물 내화성능에 대한 해석적 연구)

  • Doo Chan Choi;Min Hyeok Yang;Su Min Oh;So Jin Yang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2023
  • Purpose: This study aims to analyze the fire resistance performance applied to plant facilities with high fire risk in Korea, secure suitable fire resistance performance, and ensure the fire safety of plant facilities. Method: Using the finite element analysis program Ansys, thermal transfer analysis and structural analysis were performed with fire load and fireproof coating as variables, and the fire resistance performance of plant facilities was analyzed based on the analysis results. Result: The fireproof coating applied to domestic plant facilities failed to secure fire resistance performance when the fire load of hydrocarbon fire presented in UL 1709 was applied, and it was confirmed that the deformation of steel after the fire was also significant. Conclusion: The current fire resistance performance applied to plant facilities in Korea cannot secure fire resistance performance in sudden fire growth and large fire loads like petrochemical plants, and it is necessary to secure fire safety by evaluating suitable fire resistance performance through performance evaluation of plant facilities.

Improvement the Flame Retardancy of Epoxy Resin by the Addition of Montmorillonite (Montmorillonite 첨가에 의한 Epoxy Resin의 난연성 개선)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.300-304
    • /
    • 2008
  • The flame retardancy was evaluated to present as the fundamental data to decrease the fire hazard of polymers and life losses according to the addition of clay. The combustion characteristics were examined to increase flame retardancy and to decrease smoke yield of epoxy by the addition of clay such as montmorillonite in this study. For this study, the experiments of flame retardancy were conducted the measurement of the limiting oxygen index (LOI), char yield, and smoke density. As MMT concentration increased, LOI and char yield increased. This result showed that the flame retardancy of epoxy/MMT composite was improved. On the contrary, smoke density increased.

Evaluation of Hazardous Zones by Evacuation Scenario under Disasters on Training Ships (실습선 재난 시 피난 시나리오 별 위험구역 평가)

  • SangJin Lim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.200-208
    • /
    • 2024
  • The occurrence a fire on a training ship with a large number of people on board can lead to severe casualties. Hence the Seafarers' Act and Safety Life At Sea(SOLAS) emphasizes the importance of the abandon ship drill. Therefore, in this study, the training ship of Mokpo National Maritime University, Segero, which has a large number of people on board, was selected as the target ship and the likelihood and severity of fire accidents on each deck were predicted through the preliminary hazard analysis(PHA) qualitative risk assessment. Additionally, assuming a fire in a high-risk area, a simulation of evacuation time and population density was performed to quantitatively predict the risk. The the total evacuation time was predicted to be the longest at 501s in the meal time scenario, in which the population distribution was concentrated in one area. Depending on the scenario, some decks had relatively high population densities of over 1.4pers/m2, preventing stagnation in the number of evacuees. The results of this study are expected to be used as basic data to develop training scenarios for training ships by quantifying evacuation time and population density according to various evacuation scenarios, and the research can be expanded in the future through comparison of mathematical models and experimental values.

The Approach Methods of Improvement of Safety Standard for Architectural Glass and Curtain Wall (국내 건축용 유리 및 커튼월의 안전 기준 개선 방향에 관한 연구(II))

  • Seo, Yoon-Jeong;Seo, Dong-Goo;Shin, Yi-Chul;Kim, Dong-Eun;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.25-28
    • /
    • 2010
  • 최근 건축물의 초고층화에 따른 커튼월 시공에 따라 유리의 비중이 증가하고 있으나 커튼월 구조는 바람, 지진, 화재에 있어서 취약할 것이라 판단되어 국내외 건축용 유리 및 커튼월의 안전기준에 대한 조사를 실시하였다. 그 결과, 국내의 유리 기준은 단열 및 내풍압 성능에만 집중되어있으며 화재 및 지진, 안전 성능에 대한 기준이 미비한 실정이다. 따라서 국내에 적합한 유리 안전성 평가 프로세스를 구축하기 위한 기초 데이터를 마련하기 위해 유리 내화 실험을 시행하였다. 실험 결과, 일반유리, 복층유리, 강화유리, 접합유리 순의 파열 시간을 가지는 것을 알 수 있었으나 시험체 4개가 화재 초기에 파열되는 것으로 나타나 상층부로의 수직 화재 확대 위험성이 높을 것으로 판단된다.

  • PDF

Feasibility Study on the Fire Scenario Design of a Couch Burning through a Fire Spread Model (화염 전파모델을 이용한 소파화재 설계화원구성의 적용성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The present study has been performed to examine the feasibility of a flame spread model on the design fire scenario for fire risk analysis. Thermo-Gravimetric analysis and sample burning test were conducted to obtain the material properties of a single couch covered with synthetic leather material and a series of FDS calculations applying with the measured material properties were performed for different grid sizes. The overall fire growth characteristics predicted by the fire model were quite different from the results of a real scale fire test and the initial peak value of the HRR and total released energy showed the results within a 30% discrepancy for the computational grids used in the present study. The current model has some limitations in predicting the fire growth characteristics, such as fire growth rate and the time to the maximum HRR. This study shows that the fire model may be applicable to creating the design fire scenario through continuous model improvement and detailed material properties.

A Study on the Development of Evaluation Methods for Fire Risk Analysis of High-rise Building ((초)고층 건축물의 화재위험성 평가기법 개발에 관한 연구(I))

  • Kwon, Young-Jin;Shin, Yi-Chul
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.223-228
    • /
    • 2008
  • Fire is recognized as a significant hazard in a service life of a structure. Therefore there is a clear need to provide an improved understanding of the performance of material and structures in fire and to provide clear design guidance in order to progress safety design especially high rise building. It is the aim of this study to investigates and analyze the study on the development of evaluation methods for fire risk analysis of high-rise building.

  • PDF