DOI QR코드

DOI QR Code

Evaluation of Hazardous Zones by Evacuation Scenario under Disasters on Training Ships

실습선 재난 시 피난 시나리오 별 위험구역 평가

  • SangJin Lim (Department of Marine System Engineering, Graduate School of Mokpo National Maritime University) ;
  • YoonHo Lee (Division of Coast Guard, Mokpo National Maritime University)
  • 임상진 (국립목포해양대학교 기관시스템공학과 대학원) ;
  • 이윤호 (국립목포해양대학교 해양경찰학부)
  • Received : 2024.01.17
  • Accepted : 2024.04.26
  • Published : 2024.04.30

Abstract

The occurrence a fire on a training ship with a large number of people on board can lead to severe casualties. Hence the Seafarers' Act and Safety Life At Sea(SOLAS) emphasizes the importance of the abandon ship drill. Therefore, in this study, the training ship of Mokpo National Maritime University, Segero, which has a large number of people on board, was selected as the target ship and the likelihood and severity of fire accidents on each deck were predicted through the preliminary hazard analysis(PHA) qualitative risk assessment. Additionally, assuming a fire in a high-risk area, a simulation of evacuation time and population density was performed to quantitatively predict the risk. The the total evacuation time was predicted to be the longest at 501s in the meal time scenario, in which the population distribution was concentrated in one area. Depending on the scenario, some decks had relatively high population densities of over 1.4pers/m2, preventing stagnation in the number of evacuees. The results of this study are expected to be used as basic data to develop training scenarios for training ships by quantifying evacuation time and population density according to various evacuation scenarios, and the research can be expanded in the future through comparison of mathematical models and experimental values.

승선 인원이 많은 실습선은 화재가 발생하는 경우 대형 인명피해로 확장될 수 있으며 이에 따라 선원법 및 Safety Life At Sea(SOLAS)에서는 퇴선 훈련에 대한 중요성을 강조해 왔다. 따라서 본 연구에서는 승선 인원이 많은 국립목포해양대학교의 세계로호를 대상선박으로 선정하여 preliminary hazard analysis(PHA) 정성적 위험성 평가 기법을 통해 각 deck의 화재 사고 위험빈도와 심각성에 대하여 예측하였다. 또한 위험성이 높은 구역에서의 화재를 가정 한 뒤, 그 위험성을 정량적으로 예측하기 위하여 대피 시간 및 인구 밀도에 대한 시뮬레이션을 수행하였다. 그 결과, 총 대피시간이 인구 분포가 한 구역에 집중되어 있던 식사 시간을 가정한 시나리오에서 501초로 가장 길게 예측되었으며 시나리오에 따라 일부 deck에서 1.4pers/m2 이상의 상대적으로 높은 인구밀도를 나타내며 대피 인원이 정체되는 현상을 보였다. 본 연구 결과는 다양한 피난 시나리오에 따른 대피시간 및 인구밀도를 정량화하여 실습선의 상황에 맞는 훈련 시나리오를 개발하기 위한 기초자료로서 사용될 것으로 보이며 추후 수학적 모델과 실험값의 비교를 통하여 연구를 확장할 수 있을 것으로 예상된다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2023-0048).

References

  1. ABCnews(2014), https://abcnews.go.com/International/costaconcordia-captains-shocking-statements/story?id=27303659.
  2. CBSnews(2003), https://www.cbsnews.com/news/4-dead-in-cruise-ship-explosion/.
  3. Chong, D. Y.(2022), A Study on the Improvement Measures for the Safe Maneuvering of Passenger Ships in Port Area through Analysis of Marine Accidents, Journal of Navigation and Port Research, Vol. 46, No. 1, pp. 18-25.
  4. Fruin, J. J.(1970), Designing for pedestrians a level of service concept. Polytechnic University.
  5. IMO MSC. 1(2016), Revised Guidelines on Evacuation Analysis for New and Existing Passenger Ships.
  6. IMO MSC. 59/33(1991), Chapter 3, Life-Saving Appliances and Arrangements.
  7. ISO 17776(2016), Major Accident Hazard Management during the Design of New Installations.
  8. Kim, I. G., H. C. Kim, C. J. Chang, D. H. Jung, H. G. Sung, S. K. Park, and B. C. Choi(2021), Emergency Evacuation Simulation of a Floating LNG Bunkering Terminal considering the Interaction between Evacuees and CFD Data, Safety Science, Vol. 140, No. 105297.
  9. Kim, J. K., S. H. Bang, and S. I. Lee(2022), A study on training improvement plan of maritime universities under the International Code of Safety for Ships using Gases or Other Low-flashpoint Fuels (IGF) in Korea. Journal of Advanced Marine Engineering and Technology, 46(6), pp. 447-454.
  10. Korean Maritime Safety Tribunal(2024), https://www.kmst.go.kr/web/index.do.
  11. Li, Y., W. Cao, and A. A. Kana(2019), Design of level of service on facilities for crowd evacuation using genetic algorithm optimization, Safety Science, Vol. 120, pp. 237-247.
  12. Lim, S., H. Lee, J. Yoon, and H. Kim(2023), Performance evaluation of Ocean Thermal Energy Conversion(OTEC) stabilization based on risk analysis. Journal of Advanced Marine Engineering and Technology, 47(1), pp. 1-11.
  13. Lim, S. J., M. G. Kim, S. Kim, and Y. H. Lee(2023), Risk Assessment of Stationary Hydrogen Refueling Station by Section in Dispenser Module, Journal of the Korean Society of Marine Environment & Safety, 29(1), pp. 76-85.
  14. National Mokpo Maritime University(2024), https://www.mmu.ac.kr/S6/contents/facility.
  15. SFPE(2002), Handbook of Fire Protection Engineering 3 Edition.
  16. Thunderhead Engineering(2020), Pathfiner technical reference manual.
  17. Yan, F. and K. Xu(2019), Methodology and Case Study of Quantitative Preliminary Hazard Analysis based on Cloud Model, Journal of Loss Prevention in the Process Industries, Vol. 60, pp. 116-124.
  18. Zhang, J., J. Zhao, Z. Song, and J. Gao(2020), Evacuation performance of participants in an offshore platform under smoke situations, Ocean Engineering, Vol. 216, 107739.