• Title/Summary/Keyword: 화재억제시간

Search Result 17, Processing Time 0.023 seconds

잠수함의 공조

  • 김영일
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.30 no.4
    • /
    • pp.56-60
    • /
    • 2001
  • 경험에 의하면 앞에서 언급한 장비의 사용, 규율, 규제된 용제의 사용, 기름 페인트 사용의 억제, 그리고 엄격한 페인트 과정을 따르는 것에 의해 잠수함내의 탄화수소 농도를 100만분의 1 또는 2 수준으로 유지할 수 있다. 예방책으로는 세심한 관찰, 선체내로 들여오는 모든 물질의 기록 그리고 규제된 물질의 사용 시간, 장소 및 양의 제어이다. 이러한 점들은 잠수함 내부를 안전하고 건강한 환경으로 설계하기 위하여 활용될 수 있는 자료들이다. 잠수함 내의 공기질은 적외선 분광 광도계, 질량 분광계, 상자성(paramagnetics), 열전도율, 광이온화 그리고 열량 검사에 의해 분석될 수 있다. 분석된 결과는 과거의 데이터와 비교되어 활성탄충의 교체등을 포함하여 유지 관리의 자료로 활용된다. 이러한 원리를 이용한 다양한 계측기가 선체 내의 대기 상태를 분석하기 위하여 사용된다. 중앙 대기 측정기, 추적 가스 분석기, 수소 탐지기, 이동형 대기 모니터, 이동형 산소 분석기, 탄광 안전 지시계, 열량 분석관, 탐지 펌프 시험기가 사용된다. 이러한 계측기는 잠수 전 또는 후에 사용된다. 계측기는 화재 발생시 영향을 받지 않은 공간 또는 냉매가 충전되는 장소에 사용된다. 오늘날 여러 종류의 특별한 잠수함이 존재한다. 정찰 업무를 통해 세계 평화를 유지하고 특별한 임무를 수행하는 것보다 덜 복잡한 목적을 지닌 잠수함도 있다. 그러나 선원들이 안전한 내부 환경 속에서 바다 속을 항해하고 계속 그 응용 범위를 확장하기 위하여 앞에서 언급한 장비들 또는 그 변형들이 사용되어야 한다.

  • PDF

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid (Mn+) (알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무 시험편의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.70-76
    • /
    • 2013
  • Four kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$solutions at the room temperature. After drying specimen treated with chemicals, com-bustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation proper-ties were increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (162.02~145.36) s and total heat release rate (THRR) (73.0~67.4) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (67~23) s and the time to flameout (Tf) (472~433) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

Combustive Properties of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Salts (Mn+) (알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무판의 연소성질)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.28-34
    • /
    • 2014
  • Two kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested in comparison with the previously synthesized chemicals. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$ solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation properties were partially increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin Pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (173.48~145.36) s and total heat release rate (THRR) (73.0~55.2) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (58~18) s and the time to flameout (Tf) (564~456) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives (알킬렌디아미노알킬-비스-포스폰산 유도체로 처리된 리기다 소나무 시험편의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.57-63
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with piperazinomethyl-bisphosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylenediaminomethyl- bis-phosphonic acid (MDEDAP). Pinus rigida specimens were painted in three times with 15 wt% alkylenediaminoalkyl- bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation properties were increased by due to the treated alkylenediaminoalkyl-bis-phosphonic acid solutios in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the later time to ignition (TTI) (148-116 s) and longer time to flameout (Tf) (633-529 s) than those of virgin plate by reducing the burnig rate. Compared with virgin pinus rigida plate, the specimens treated with the alkylenediaminoalkyl-bis-phosphonic acids showed partially low combustive properties. However the specimens treated with PIPEABP showed both the higher peak heat release rate (PHRR) (187.56 $kW/m^2$) and higher total heat release rate (THRR) (75.7 $MJ/m^2$) than those of virgin plate.

Combustive Characteristics of Wood Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acids (알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.57-63
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida specimens treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylene-diaminomethyl-bis-phosphonic acid (MDEDAP). Pinus rigida Plates were painted in three times with 15 wt% alkylenedi-aminoalkyl-bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the specimens treated with chemicals showed the later time to peak mass loss rate ($TMLR_{peak}$) = (315~420) s than that of virgin plate by reduc-ing the burning rate except for $TPMR_{peak}$ (280 s) treated with DMDAP. In adition, the specimens treated with chemicals showed both the higher total smoke release rate (TSRR) (407.3~902.0) $m^2/m^2$ and $CO_{mean}$ production (407.3~902.0) $m^2/m^2$ than those of virgin plate. Especially, for the specimens treated with PIPEABP, 1st-smoke production rate (1st-SPR) (0.1250~0.1297) g/s was lower than that of virgin plate, while the 2nd-SPR (0.183 g/s) was higher. Thus, It is supposed that the combustion-retardation properties were improved by the partial due to the treated alkylenediaminoalkyl-bis-phos-phonic acids in the virgin Pinus rigida.

Evaluation of Combustion gas during Fire Tests of Veneers Coated with Ammonium Salts (암모늄염으로 도포시킨 베니어판의 연소 시에 발생하는 연소가스 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.93-99
    • /
    • 2016
  • This study tested the combustion characteristics of veneer specimens coated with four kinds of ammonium salts. Each veneer specimen was coated three times with 20 wt.% ammonium salt solutions at room temperature. After drying, the combustion characteristics of the specimens coated with chemicals, were investigated using the cone calorimeter (ISO 5660-1, 2). The specimens coated with monoammonium phosphate (MAPP) and, diammonium phosphate (DMPP) showed a 6.7% and, 10.0%, lower mean heat release rate ($HRR_{mean}$), respectively, than that of the uncoated specimen. On the other hand, the specimens coated with MAPP showed a 15.7% higher $CO_{peak}$ production rate and the specimens coated with DAPP showed by 8.2% lower rate than that of the uncoated specimen. The veneer coated with ammonium sulfate (AMSF) and DAPP showed a 9.6% and 33.3% lower the peak smoke production rate ($SPR_{peak}$) than that of the uncoated specimen. In addition, the time to the peak smoke extinction area ($SEA_{peak}$) was delayed by 38.4% in the specimens coated with DAPP than the uncoated specimen. Therefore, DAPP inhibited the combustion properties of the veneer and showed a tendency to reduce smoke production.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.