• Title/Summary/Keyword: 화염확장속도

Search Result 8, Processing Time 0.022 seconds

An Experimental Investigation on Flame Spreading Over Liquid Fuel Surface (액체연료표면에서의 화염 확장에 관한 연구)

  • 김한석;백승욱;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.271-276
    • /
    • 1989
  • Flame spreading over a hydrocarbon fuel surface has been investigated for liquid fuels such as kerosene and diesel, using thermocouple. Without forced convection, it was clearly found that the flame spreading was mainly controlled by the liquid fuel surface flow. Furthermore, the radiative heat transfer was dominant over a conductive heat transfer in kerosene. But in diesel the latter was found to be more influential than the former, when the direction of windflow was the same as that of flame spreading. The oscillation period and amplitude of the flame spreading velocity increase if the windflow is blowing in the direction of the flame spreading velocity, and decrease if the direction of windflow is blowing against the flame spreading direction.

An experimental Investigation on Flame spreading over liquid fuel surface (액체 연료 표면에서의 화염확장기구에 관한 실험적 연구)

  • 김한석
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 1993
  • Flame spreading over liquid fuel surface has been investigated using thermocouple and schlieren photograph. Without forced convection, it was clearly found that the flame spreading is mainly controlled by surface flow which is maybe generated by change of surface tension. Furthermore, the radiative heat transfer is dominant over a conductive heat transfer in kerosene. But the latter was found more influential than the former in diesel. Oscillation of flame spreading was found. It maybe cause of surface flow.

  • PDF

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF

Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor (저선회 모델 연소기의 연소특성 및 선회각도 영향)

  • Jeong, Hwanghui;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.40-49
    • /
    • 2016
  • This study aims to confirm the characteristics of low swirl combustion at our low swirl model combustor. To do it, it is experimentally conducted by evaluating the flame shape, stability region and emissions according to the swirl angle. The most significant feature of low swirl combustion is a occurrence of lifted flame. Such lifted flames happen to combine exquisitely propagating feature of premixed flame with diverging flow. This feature of lifted flame was confirmed through a velocity flow field and visualized the flame in this model combustor. The visualized flame was classified according to the thermal power and equivalence ratio. The variation study in swirl angles showed that the lean flammable limit could be extended only by swirl angles. Also, as the swirl angle increased, it was confirmed that the NOx and CO emissions were decreased due to the mixing enhancement and shorter resident time.

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 2 : Nonlinear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 2 : 비선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • It is very important to predict the nonlinear behavior of combustion instability such as transition phenomena and limit cycle amplitude for fully understanding and controlling the instabilities. These nonlinear instability characteristics are highly dependent upon the flames' nonlinear dynamics in a gas turbine premixed combustor. In this study, nonlinear instability TA(Thermo-acoustic) models were introduced by applying the concept of flame describing function to the thermoacoustic analysis method. As a result of model development, for a given combustor length, the growth rate of instability was greatly affected by the change in amplitude, although the instability frequency was not. Further researches under various operating conditions and model validation on limit cycle amplitude are required.

Consequence Analysis of Hydrogen Blended Natural Gas(HCNG) using 3D CFD Simulation (CFD를 활용한 수소-천연가스 혼합연료에 대한 피해영향 분석)

  • Kang, Seung-Kyu;Bang, Hyo-Jung;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 2013
  • This study evaluated comparison of the risk according to the type of fuel by three-dimensional simulation tool(FLACS). The consequence analysis of fire explosion and jet-fire was carried out in the layout of a typical high-pressure gas filling stations using CNG, hydrogen and 30%HCNG. Under the same conditions, hydrogen had a 30kPa maximum overpressure, CNG had a 0.4kPa and HCNG had a 3.5kPa. HCNG overpressure was 7.75 times higher than the CNG measurement, but HCNG overpressure was only 11.7% compared to hydrogen. In case of flame propagation, hydrogen had a very fast propagation characteristics. On the other hand, CNG and HCNG flame propagation velocity and distance tended to be relatively safe in comparison to hydrogen. The estimated flame boundary distance by jet-fire of hydrogen was a 5.5m, CNG was a 3.4m and HCNG was a 3.9m.

A Study on the Laminar Burning Velocity Using an Angle Method and Annular Diverging Channel Combustor and Characteristics Of Chemiluminescence (각도법과 동심형 확장 채널 연소기를 이용한 연소속도 측정 및 화염 발광 특성에 관한 연구)

  • Yun, Seungho;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.91-94
    • /
    • 2014
  • In this study, the laminar burning velocities of SNG fuel were studied using both experimental measurements and kinetic simulations. They were measured using the angle method of Bunsen flame configuration and the annular diverging channel combustor. And they were also numerically calculated by CHEMKIN Package with GRI 3.0 mechanisms. Spectrometer was used for characteristics of flame chemiluminescence of SNG fuels. From results of this work, first, we found that according to adding $H_2$ contents in the fuels the laminar burning velocities of SNG fuels were increased. And second, we also discovered existence of OH*, CH*, $C_2*$, HCO*, $CH_2*$ radicals and their correlation.

  • PDF

The Influence of the Presence of Balconies on Flame Acceleration in Multi-unit Dwellings (공동주택의 발코니 유·무가 화염분출 특성에 미치는 영향 연구)

  • Kang, Youn-Gyu
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • We are living in the 21st century, a new era of high-technology. Due to movements in population towards certain preferred areas, caused by material and technological advancement, growth has occurredn beyond the metropolis, leading to the development of the so-calleda "megalopolis." This development has changed the culture of housing, notably the characteristics of high-rise buildings, and underground facilities (such as subways and shopping centers), and has generally enlarged the scale of the facilities. Due to the increase in the number of single-family households, - notably ones including only the nuclear family, there has been a growing overpopulation problem, with apartments and urban housing developments expanding at rates beyond institutional safety regulations. In this study, we analyze the phenomenon of fire spreading in apartment buildings through actual apartment fire case studies, including that of the MunjonPonpuri apartment building. It was found that the speed at which the fire spreads is lower in apartments without than in those with an extended balcony. Based on the findings from case studies and the test results, we propose a series of safety countermeasures and responses for apartment fires.