• Title/Summary/Keyword: 화염묘사함수

Search Result 2, Processing Time 0.016 seconds

Limit Cycle Amplitude Prediction Using Results of Flame Describing Function Modeling (화염묘사함수 모델링 결과를 이용한 한계 진폭 예측)

  • Kim, Jihwan;Kim, Jinah;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.46-53
    • /
    • 2016
  • It is required to predict a limit cycle amplitude controlled by system's nonlinear behavior as well as an eigen-frequency and initial growth rate of instabilities under the linear motions, in order to fully understand combustion instabilities in a lean premixed gas turbine combustor. Special focus of the current work is placed on the limit cycle amplitude prediction using flame describing function(FDF) where the ratio of a heat release fluctuation to a given flow perturbation is expressed as a function of frequency and amplitude. In this study, the CFD modeling work based on RANS is carried out to obtain FDF, which makes that the nonlinear thermo-acoustic model is successfully developed for predicting the limit cycle amplitude of the combustion instability.

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 2 : Nonlinear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 2 : 비선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • It is very important to predict the nonlinear behavior of combustion instability such as transition phenomena and limit cycle amplitude for fully understanding and controlling the instabilities. These nonlinear instability characteristics are highly dependent upon the flames' nonlinear dynamics in a gas turbine premixed combustor. In this study, nonlinear instability TA(Thermo-acoustic) models were introduced by applying the concept of flame describing function to the thermoacoustic analysis method. As a result of model development, for a given combustor length, the growth rate of instability was greatly affected by the change in amplitude, although the instability frequency was not. Further researches under various operating conditions and model validation on limit cycle amplitude are required.