• Title/Summary/Keyword: 화염모델

Search Result 286, Processing Time 0.024 seconds

Detonation Wave Propagation Through a T-type Branch Tube in Combustion Wave Rocket Igniter (연소파 로켓 점화기의 T형 분기관내 데토네이션파 전파)

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.221-224
    • /
    • 2003
  • A numerical study is carried out for the detonation wave propagation through a T-branch. The T-branch is a crucial part of the combustion wave igniter, a novel concept of rocket ignition system aimed for the simultaneous ignition of multiple combustion chambers by delivering detonation waves. Euler equation and induction parameter equation are used as governing equations with a reaction term modeled from the chemical kinetics database obtained from a detailed chemistry mechanism. Second-order accurate implicit time integration and third-order space accurate TVD algorithm were used for solution of the coupled equations. Over two-million grid points enabled the capture of the dynamics of the detonation wave propagation including the degeneration and re-initiation phenomena, and some of the design factors were be obtained for the CWI flame tubes.

  • PDF

A Fire Test Measuring the Heat Release Rate of Railway Car Interior Materials Satisfying the Korean Safety Guideline (안전기준을 만족하는 철도차량 내장재의 화재 열방출율 측정시험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.40-49
    • /
    • 2009
  • A large-scale fire test was conducted for interior materials from a vehicle installed within a fire test room (ISO 9705). The interior materials are satisfying the Korean guideline for the safety of rail vehicles, where the guideline has taken effect since December 2004 in Korea. The output of ignition source (gas burner) was increased in several controlled steps. The objectives of this test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving train interior materials that grow to flashover. These data will be used to develop and calibrate models for fire growth on the interiors of the railway vehicle.

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer (난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.

Experimental Study on Heat Flow According to the Wind Velocity in an Underground Life Space (지하생활공간 화재시 풍속에 따른 열유동 특성 연구)

  • Kim, Young-No;Suk, Chang-Mok;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study analyzes heat flows and fire behavior through a reduced-scale model experiments about change of wind velocity in underground life space. When the wind velocity is increased the temperature rise time of the fire room was risen fast. And temperature of fire room was increased. And increase of wind velocity displayed maximum temperature at an opening of the fire room. Heat flows by fire spread increase size of smoke occurrence and flame, and displayed high temperature distribution in passageway than inside of neighborhood department promoting eddy flow spread as wind velocity increases. Finally, heat flows are decided by wind and wind velocity at fire of underground life space, and Wind velocity increases, temperature increase and decrease could confirm that is gone fast.

Optimum Fire Extinguishing Modeling using Impact Factor Analysis on Water Mist System of Pool Fire (영향인자 분석을 통한 고임화재의 미분무수 최적소화 모델링)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Lee, Sung-Eun;Kim, Sung-Won;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.84-89
    • /
    • 2009
  • In this study, the fire extinguishing experiment was performed using a water mist nozzle with variation of factors which affect on the extinguishing time. The variables were distance from nozzle center to fire location, droplet size, height of nozzle and opening or not. With the experimental data, interaction and sensitivity between factors were analysed with Mini tab and deduce a optimum model of fire extinguishing of water mist system. Based on the experiment and modeling of fire extinguishing with water mist system, the most important factor on extinguishing time is the distance from the center of nozzle to fire and the opening effect was small compare with other factors.

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염의 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.18-29
    • /
    • 2004
  • Partial quenching structure of diffusion flames in a turbulent mixing layer has been investigated by the method of flame hole dynamics in oder to develope a prediction model for the phenomenon of turbulent flame lift off. The present study is specifically aimed to remedy the shortcoming of the stiff transition of the conditioned partial burning probability across the crossover condition by employing the level-set method which enables us to include the effect of finite flame edge propagation speed. In light of the level-set simulation results with two models for the edge propagation speed, the stabilizing conditions for turbulent lifted flame are suggested. The flame hole dynamics combined with the level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping based on three critical scalar dissipation rates. The probability to encounter reacting state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate. Such a smooth transition is attributed to the finite response of the flame edge propagation.

  • PDF

Research trend analysis for Combustion products, Combustion products remove technique (연소생성물제거 기술에 대한 연구 동향 분석)

  • Lee, Hyunjin;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • According to 2015 ministry of public safety and security statistics, product of combustion makes the most victims while fire. for that reason, recent studies about combustion products have been researched actively in domestic and foreign papers. In domestic, study is handling the combustion product effects on human body and flame propagation. Foreign study is conduct about combustion product effects to shelter in offshore and toxic effects on human. because combustion product is toxic and disturb escape by block the view, many research conducted about optimize combustion product removal facilities using dispersion experiments and CFD simulations. In this study, this paper analysed research trend about toxic gas production model while combustion and its removal facilities, it will be the standard of combustion products research.

Relationship between Autoigniton Temperature(AIT) and Ignition Delay Time for Acids (산(Acid)류의 자연발화온도와 방화지연시간의 관계)

  • 하동명
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • An accurate knowledge of the AIT(Autoignition temperatures) of chemicals is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The measurement AITs are dependent upon many factors. namely initial temperature. pressure, volume, fuel/air stoichiometry. catalyst material, concentration of vapor, ignition delay time. This study measured the AITs of acids from ignition delay time by using ASTM E659-78 apparatus which was produced in the year 1994. The experiment AITs were a good agreement with the calculated AITs by the proposed equations with a few A.A.P.E.(average absolute percent error) and A.A.D.(average absolute deviation).