• Title/Summary/Keyword: 화력학

Search Result 218, Processing Time 0.036 seconds

Evaluation of Leaching Potential of Heavy Metals from Bottom Ashes Generated in Coal-fired Power Plants in Korea (국내 석탄 화력발전소 배출 바닥재의 중금속 용출 가능성 평가)

  • Park, Dongwon;Choi, Hanna;Woo, Nam C.;Kim, Heejoung;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.32-40
    • /
    • 2013
  • This study was objected to evaluate the potential impact on the groundwater environment of the coal bottom ash used as fill materials on the land surface. From four coal-fired power plants, bottom-ashes were collected and analyzed through sequential extraction and column leaching tests following the meteoric water mobility procedure. The column tests shown leaching heavy metals including Pb, As, B, Cu, Zn, Mn, Ni, Ba, Sr, Sb, V, Cr, Mo, and Hg. The relatively high concentrations of B, Sr, Ba, and V in leachate were attributed to both the higher concentrations in the bottom ash and the relatively higher portion of leachable state, sorbed state, of metals. Bottom-ash samples from the D-plant only show high leaching potential of sulfate ($SO_4$), probably originated from the coal-combustion process, called the Fluidized Bed Combustion. Consequently, to manage recycling bottom ashes as fill materials, an evaluation system should be implemented to test the leaching potentials of metals from the ashes considering the absolute amount of metals and their state of existence in ashes, and the coal-combustion process.

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

A Design of Reference Model Following Fuzzy Control System for Boiler-Turbine Equipment (보일러-터빈 설비에 대한 기준모델 추종 퍼지 제어시스템의 설계)

  • 정호성;황창선;황현준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-91
    • /
    • 1997
  • In this paper, a design method of the boiler-turbine control system in the coal fired power plant is proposed. We need to control electric output and drum pressure and water level in drum to guarantee stable operation and save energy for generating electricity and decrease air pollution in the boiler-turbine system. This boiler-turbine control system is composed of reference model part and model following part. The multivariable boiler-turbine system is separated into 3 SISO(Single Input Single Output) systems applying the concept of relative gain matrix. Each 3 reference models for separated boiler-turbine system are composed of 1st order nominal plant and hysteresis integral control system and they make good dy¬namic response with no overshoot and fast rising time. Each fuzzy controller to follow as close as possible to the response of each reference model is designed. The robustness and the good tracking property can be achieved using 5150 fuzzy controllers when there are modeling errors, disturbances and parameter pertur¬bations. The effectiveness of the proposed design method is verified through simulations.

  • PDF

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Characteristics of Total Atmospheric Deposition by the Filtration-Sampling Method at Coal-Fired Power Plant Area (여과식 채취방법에 의한 대기오염 총침착물의 특성 -석탄화력발전소 주변지역을 중심으로-)

  • 박정호;조인철;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • Total(=wet+dry) atmospheric depositions were collected by filtration-sampling method at 17 sampling sites of the coal-fired power plant area from September 1999 to January 2000. The soluble and insoluble fractions of deposition were also measured to investigate a suitability of simplified collection method for a long-term monitoring of total deposition. In the study, the 50% of sampled soluble fractions showed the electric conductivity (E.C.) of below 50 $\mu$S/cm and the 42% of them showed the lower pH than 5.0. The monthly mean fluxes of water soluble ionic components; S $O_4$$^{2-}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , N $a^{+}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$ were 168.4 kg/k $m^2$.month, 100.5 kg/k $m^2$.month, 88.6kg/k $m^2$.month, 31.3kg/k $m^2$.month, 25.6 kg/k $m^2$.month, 13.3 kg/k $m^2$.month, 8.7 kg/k $m^2$.month, 43.1kg/k $m^2$.month, respectively. The mean ionic concentration of all sample(n=79) was 314 $\mu$eq/ι, with contributions of 24.2% and 23.0% by [nss-C $a^{2+}$] and [nss-S $O_4$$^{2-}$]. The ratio of [N $O_3$$^{[-10]}$ ]/[nss-S $O_4$$^{2-}$] and [N $H_4$-C $a^{2+}$] were found to be 0.52 and 0.68, respectively.espectively.

Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea (국내 무연탄 화력발전소의 온실가스 배출계수 개발 - CH4, N2O를 중심으로 -)

  • Lee, See-Hyung;Kim, Jin-Su;Lee, Seong-Ho;Sa, Jae-Hwan;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.562-570
    • /
    • 2009
  • Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-$CO_2$ greenhouse gas $CH_4$ and $N_2O$ are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-$CO_2$ emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of $CH_4$ and $N_2O$ computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the $CH_4$ emission factor in this study was about 25% lower, while that of $N_2O$ was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.

Development of Non-CO2 Greenhouse Gas Emission Factors for the B-C Oil Fired Boiler Power Plants (B-C유 화력발전소 보일러의 Non-CO2 온실가스 배출계수 개발 연구)

  • Lee, See-Hyung;Kim, Jin-Su;Kim, Ok-Hun;Lee, Jeong-Woo;Lee, Seong-Ho;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The power plants are one of the GHG major source among the sectors of fossil fuel combustion, therefore information of its emission factors is very essential to the establishing control strategies for the greenhouse gas emissions. The $CH_4$ and $N_2O$ concentration from power plants were measured using GC-FID and GC-ECD. The results showed that $CH_4$ emission factor was 0.33 kg/TJ and $N_2O$ emission factor was 0.88 kg/TJ. The $CH_4$ and $N_2O$ emission factors developed in this study were compared with those for IPCC default value and other countries emission factors. The results showed that $CH_4$ emission factor was lower than IPCC default value and Finnish emission factor, but higher than Japanese emission factor. $N_2O$ emission factor was higher Japanese emission factor and IPCC default emission factor however lower than Finnish emission factor. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.

A Study on the Development of the Mercury Emission Factor from Coal-fired Power Plant (석탄 화력발전시설에서의 수은 배출계수 개발에 관한 연구)

  • Kim, Hyung-Chun;Park, Jung-Min;Jang, Kee-Won;Lee, Sang-Bo;Jung, No-El;Song, Deok-Jong;Hong, Ji-Hyung;Lee, Suk-Jo;Kim, Sang-Kyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.172-181
    • /
    • 2012
  • Mercury is one of the most hazardous air pollutants. Recently, mercury has been a concern in domestic and overseas because it has lethal toxicity, long distance transport, persistence and bioaccumulation in the environment. Stationary combustion sources such as coal-fired power plants, waste incinerators, and cement kilns are the major sources of mercury emissions. The objectives of this study were to measure the concentration for mercury from coal-fired power plants and to calculate emission factor to estimate its emission. The results showed that the mercury concentrations in the flue gas were 1.63-3.03 mg/$Sm^3$ in anthracite-fired power plants (average 2.32 mg/$Sm^3$) and 1.95-3.33 mg/$Sm^3$ in bituminous-fired power plants (average 2.6 mg/$Sm^3$). Mercury emission factor was estimated as 25.74 mg/ton for anthracite-fired power plants and 12.48 mg/ton for bituminous-fired power plants. Because actual measurements are limited in quantity, it is desirable to refine our estimates by extending the actual measurements.

Comparison of Measurement Methods and Size Fraction of Fine Particles (PM10, PM2.5) from Stationary Emission Source Using Korean Standard and ISO: Coal Power Plant and Refinery (국내공정시험기준과 ISO 방법을 이용한 고정오염원 미세먼지 (PM10, PM2.5) 측정 방법 및 입경분율 비교: 석탄화력발전소, 석유정제시설 중심으로)

  • Youn, Jong-Sang;Han, Sehyun;Jung, Yong-Won;Jeon, Ki-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.342-350
    • /
    • 2017
  • We report mass concentration and size fraction of TPM, $PM_{10}$ and $PM_{2.5}$ according to Korea standard test method (ES 01301.1 and ES 01317.1) and ISO 23210 methods. Particulate matters were sampled in large stationary emission sources such as a coal power plant and B-C oil refinery. The Korea standard test method PM mass concentrations showed 3~3.5 times larger than the cascade impactor method. On the other hand, the size fraction results showed less than 5% difference (i.e. $PM_{2.5}/PM_{10}$) between two methods. Moreover, the correlation coefficient ($r^2$) is 0.84 between TPM results of the Korea standard test method and CleanSYS. These results suggested not only improvement of current test criteria in terms of technical and theoretical aspects. Further, additional measurements are required in various large stationary sources to compare current field data.

A Study on the Utilization of Air Quality Model to Establish Efficient Air Policies: Focusing on the Improvement Effect of PM2.5 in Chungcheongnam-do due to Coal-fired Power Plants Shutdown (효율적인 대기정책 마련을 위한 대기질 모델 활용방안 고찰: 노후 석탄화력발전소 가동중지에 따른 충남지역 PM2.5 저감효과 분석을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Lee, Jae-Bum;Choi, Ki-Cheol;Jang, Lim-Seok;Choi, Kwang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.687-696
    • /
    • 2018
  • In order to develop effective emission abatement strategies for coal-fired power plants, we analyzed the shutdown effects of coal-fired power plants on $PM_{2.5}$ concentration in June by employing air quality model for the period from 2013 to 2016. WRF (Weather Research and Forecast) and CMAQ(Community Multiscale Air Quality) models were used to quantify the impact of emission reductions on the averaged $PM_{2.5}$ concentrations in June over Chungcheongnam-do area in Korea. The resultant shutdown effects showed that the averaged $PM_{2.5}$ concentration in June decreased by 1.2% in Chungcheongnam-do area and decreased by 2.3% in the area where the surface air pollution measuring stations were located. As a result of this study, it was confirmed that it is possible to analyze policy effects considering the change of meteorology and emission and it is possible to quantitatively estimate the influence at the maximum impact region by utilizing the air quality model. The results of this study are expected to be useful as a basic data for analyzing the effect of $PM_{2.5}$ concentration change according to future emission changes.