• Title/Summary/Keyword: 화강암질암

Search Result 48, Processing Time 0.023 seconds

Sandstone composition and Paleoclimate of cretaceous Jinju and Iljig Formations of the Western Euiseong Area in the northern Part of Kyongsang Basin (경상분지북부 의성서부지역 백악기 진주층.일직층의 사암성분 및 고기후)

  • 박진아;이용태;김상욱;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.111-122
    • /
    • 1997
  • Provenance type and paleoclimate of the Jinju and Iljig formation were studied on the basis of compositions of sandstones from the western Euiseong area in the northern part of Kyong-sang basin. The average compositions of quartz, feldspar and lithic grain(Q:F:L) from the sandstones are 53:40:7 and 50:46:4 for Jinju and Iljig formations, respectively. The values fall into the arkosic arenite field. Petrographic detrital modes of the sandstones mainly suggest transitional continental block for the tectonic setting of the provenance. All sandstones from the Jinju and IIjig formations show chemical compositions close to average values of arkose(Pettijohn, 1975). $Na_2O$ contents is relatively high. $Fe_2O_3$(total iron) and MgO contents decrease with increasing $SiO_2$ contents since the framework grains of arkoses supposed to be derived from granitic rocks are poor in ferromagnesian minerals. The detrital framework grains still possess climatic signs even though the grains were more or less altered during deep burial. Bivariant plot of Suttner and Dutta(1986) suggests semi-arid to semi-humid paleoclimate during the deposition of the Jinju and Iljig sandstones.

  • PDF

Geological Structures of the Yeongchun Area, Danyang Coalfield, Korea (단양탄전, 영춘지역의 지질구조)

  • Kim, Jeong Hwan;Lee, Je Yong;Nam, Kil Hyun
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 1992
  • The Yeongchun area is located at the central part of the Danyang Coalfield, where Precambrian granitoids, Cambro-Ordovician Choseon Supergroup, Carboniferous-early Triassic Pyeongan Supergroup, middle Triassic-Jurassic Bansong Group and extrusive tuffs are exposed. The rocks in the area underwent four phases of deformation, which are (a) $D_1$ : Movement of the Okdong Fault, (b) $D_2$ : Formation of NW-SE trending folds and stretching lineations, (c) $D_3$: Movement of the Gagdong Thrust Fault and associated structures of NNE-SSW trending folds, and (d) $D_4$ : E-W trending strike-slip faults and folds. During the $D_3$-event, flexural slip deformation intensively affected rocks in the area. Strain measurements show relatively low strain intensity in the area. The types of strain ellipsoid are prolate in the hangingwall area and those near to the footwall area range from plane strain to weak oblate. The oblate type is developed in the region far from the footwall area.

  • PDF

Deterioration Diagnosis and Conservation Treatment of the Three-storied Stone Pagoda in Seungansaji Temple Site, Hamyang, Korea (함양 승안사지 삼층석탑의 풍화훼손도 진단과 보존처리)

  • Lee, Myeong Seong;Choi, Hee Su;Kim, Ji Young;Lee, Chan Hee;Kim, Sun Duk
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.99-112
    • /
    • 2011
  • The three-storied stone pagoda located in Seungansaji temple site consists mainly of medium to fine-grained biotite granite and granitic gneiss, and partly macrocrystalline gneiss, muscovite gneiss and gabbro. The surface of the stone pagoda is extensively colonized by lichen and moss due to surrounding trees and lawns, and severly deteriorated. Therefore, a comprehensive deterioration diagnosis has been carried out and conservation treatment was conducted in this study. For the conservation treatment, dry cleaning is performed throughout all the surface of the pagoda for naturally grown lichen and biological contaminants using a soft brush and wooden knife. Crustose lichen strongly adhere to the surface was removed by wet cleaning using distilled water. Also, protective railings were reinstalled to an appropriate height with taking the distance from the stone pagoda into account. Finally, the ground around the stone pagoda was repaired with clay sand, and dike was installed with a natural gradient to facilitate water drainage.

  • PDF

Deterioration Assessment and Conservational Scientific Diagnosis of the Stone Pagoda in the Bunhwangsa temple, Gyeongju, Korea (경주 분황사석탑의 풍화훼손도 평가와 보존과학적 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.19-32
    • /
    • 2006
  • The stone pagoda of the Bunhwangsa temple made by piling small brick-shaped stones. The major rock forming stone bricks are andesites with variable genesis. Rock properties of the pagoda roof stone suffer partly including multiple peel-offs, exfoliation, decomposition like onion peels, cracks forming round lines and falling off stone pieces. The stylobates and tabernacles in all the four directions the pagoda are mostly composed of granitic rocks. Those rock properties are heavily contaminated by lichens and mosses with the often marks of inorganic contamination by secondary hydrates that are dark black or yellowish brown. Within the four tabernacles and northern pagoda body situated to relatively high humidity. There are even light gray precipitate looking like stalactites between the northern and western rocks of the body Their major minerals are calcite, gypsum and clays. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Total rock properties of the pagoda are 9,708 pieces, among the all properties, fractured blocks are 11.0%, fall out blocks are 6.7% and covered blocks by precipitates are 7.0%, respectively. The pagoda has highly deteriorated the functions of the rock properties due to physical, chemical and biological weathering, therefore, we suggest that this pagoda has need to do long term monitoring and synthetic conservation researches.

  • PDF

Zircon Morphology and Petrochemistry of Mesozoic Plutonic rocks in Seonsan Area, Korea (선산 지역 중생대 심성암류의 저어콘 헝태 및 암석화학)

  • 이윤종;박순자;장용성;정원우;김중욱;황상구;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.81-102
    • /
    • 2004
  • The plutonic rocks in Seonsan area are divided into dioritic-syenitic rock, gneissose granite, biotite granite and fine grained biotite granite. These rocks intruded into the Pre-cambrian metamorphic complex and are all covered by the Cretaceous Nakdong formation. According to modal minerals, dioritic-syenitic rock corresponds to quartz monzonite, granodiorite, tonalite fields, whereas all the other plutonic rocks fall in granite field. Petrochemically the dioritic-syenitic rock is lower in SiO$_2$ content, differentiation index and Larsen index than all the other plutonic rocks. About the zircon morphology, dioritic-syenitic rock shows (100) dominant type but other granitic rocks exhibit mixed types between (100) and (110) type. The dioritic-syenitic rock could be crystallized in higher temperature than the other plutonic rocks. The plutonic rocks correspond to calc-alkaline rock series, and belong to I-type granite and mostly magnetite-series in magmatic origin. In plutonic processes, the dioritic-syenitic rock with 5kb vapor pressure could intrude into the metamorphic batement at 17km deep below the surface. Later the gneissose granite with lower 3kb vapor pressure could intrude at 10km deep. Sequentially the biotite granite with 0.7kb could intrude at 2km deep. Finally the fine grained biotite granite with 3kb vapor pressure could intrude at 10km deep.

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

Miocene Volcanic Rocks Over the Area of Chenonja-bong and Siru-bong, Jinhae (1): Petrography and Petrochemical Characteristics (진해 천자봉-시루봉 일원에 분포하는 마이오세 화산암 (1): 암석기재와 암석화학적 특징)

  • Ryoo, Sam-Hyung;Jeong, Yun-Gi;Lee, Sang-Won;Sung, Jong-Gyu;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.108-131
    • /
    • 2008
  • The Miocene andesite and basalt intruded into and/or extruded on the Cretaceous volcanic and granitic rocks over the area of Chenjabong and Sirubong in the vicinity of Jinhae, southern part of Kyongsang basin. The K-Ar ages of the younger volcanic rocks are from 16 Ma (Sirubong andesite) to 10 Ma (Cheonjabong basalt), which indicate the Miocene volcanism in the outer part of the Tertiary basin in the Korean peninsula. The volcanics are divided into Chenjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite and Cheonjabong basalt. The Cheonjabong andesite is composed of phenocrysts of clinopyroxene and plagioclase ($An_{60{\sim}64}$) and groundmass with lath-like plagioclase ($An_{76{\sim}84}$) and glass. The Cheonjabong basaltic andesite is composed of plagioclase phenocryst ($An_{60{\sim}64}$) with plagioclase lath ($An_{65}$) and glass in groundmass. The Sirubong andesite is only consisted of plagiocalse lath ($An_{64{\sim}68}$) and glass with absence of phonocryst. The Cheonjabong basalt shows typical porphyritic texture with phenocrysts of olivine ($Fo_{69-84}$) and clinopyroxene. The groundmass of the Cheonjabong basalt is composed of microphenocrysts of olivine, clinopyroxene and plagioclase ($An_{66{\sim}71}$) and plagioclase laths ($An_{57{\sim}65}$) showing pillotaxitic and intergranular texture. The Cheonjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite are belong to calc-alkialine but the Cheonjabong basalt is alkaline basalt. By tectonic discrimination diagrams the parental magmas of the volcanic rocks have occurred boundary.

GENERAL STRATIGRAPHY OF KOREA (한반도층서개요(韓半島層序槪要))

  • Chang, Ki Hong
    • Economic and Environmental Geology
    • /
    • v.8 no.2
    • /
    • pp.73-87
    • /
    • 1975
  • Regional unconformities have been used as boundaries of major stratigraphic units in Korea. The term "synthem" has already been propsed for formal unconformity-bounded stratigraphic units of maximum magnitude (ISSC, 1974). The unconformity-based classification of the strata in the cratonic area in Korea comprises in ascending order the Kyerim, $Sangw{\check{o}}n$, $Jos{\check{o}}n$, $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems, and the Cenozoic Erathem. The unconformites separating them from each other are either orogenic or epeirogenic (and vertical tectonic). The sub-$Sangw{\check{o}}n$ unconformity is a non-conformity above the basement complex in Korea. The unconformities between the $Sangw{\check{o}}n$, $Jos{\check{o}}n$, and $Py{\check{o}}ngan$ Synthems are disconformities denoting late Precambrian and Paleozoic crustal quiescence in Korea. The unconformities between the $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems are angular unconformities representing Mesozoic orogenies. The bounding unconformities of the $Ky{\check{o}}ngsang$ Synthem involve non-conformable parts overlying the Jurassic and late Cretaceous granitic rocks.

  • PDF