• Title/Summary/Keyword: 홀 접합

Search Result 72, Processing Time 0.031 seconds

Scalar Perturbation and Stability of a New Wormhole in Einstein-Born-Infeld Gravity (아인슈타인-본-인펠트 중력 이론에서 새로운 웜홀의 스칼라장 섭동과 안정성)

  • Kim, Jin Young
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1262-1267
    • /
    • 2018
  • We introduce a new method to construct wormholes without adopting exotic matters in Einstein-Born-Infeld gravity with a negative cosmological constant. Contrary to the conventional method, the throat of the wormhole is located at the point where the metric solutions are joined smoothly. Thus, exotic matters are not needed to sustain the throat. We consider the behavior of a minimally coupled scalar field to study the stability of the new wormhole. If we define the quasinormal mode of the scalar field as the purely ingoing flux at the throat of the wormhole, the stability of wormhole can be discussed in analogy with the argument that we use for the stability of a black hole. Because an analytic solution can not be found, we suggest a formalism to find quasinormal modes numerically. The crucial difference from the black hole case is that the coefficient of the second-order derivative term of the radial equation is expanded from n = -1, which is contrary to the black hole case where it is expanded from n = 0.

Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer ($C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상)

  • Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.19-25
    • /
    • 2008
  • In this study, we fabricated Organic Thin Film Transistors(OTFTs) with $C_{60}$ hole injection layer between organic semiconductor(pentacene) and metal electrode, and we compared the electrical characteristics of OTFTs with/without $C_{60}$. When the $C_{60}$ hole injection layer was introduced, the mobility and the threshold voltage were improved from 0.298 $cm^2/V{\cdot}s$ and -13.3V to 0.452 $cm^2/V{\cdot}s$ and -10.8V, and the contact resistance was also reduced. When the $C_{60}$ is inserted, the hole injection was enhanced because the $C_{60}$ prevent the unwanted chemical reaction between pentacene and Au. Furthermore, we fabricated the OTFTs using Al as their electrodes. When the OTFTs were made by only aluminum electrode, the channel were not mostly made because of the high hole injection barrier between pentacene and aluminum, but when the $C_{60}$ layer with an optimal thickness was applied between aluminum and pentacene, the device performances were obviously enhanced because of the vacuum energy level shift of Al and the consequent decrease of the hole injection barrier which was induced by the interface dipole formation between $C_{60}$ and Al. The mobility and $I_{ON}/I_{OFF}$ current ratio of OTFT with $C_{60}/Al$ electrode were 0.165 $cm^2/V{\cdot}s$ and $1.4{\times}10^4$ which were comparable with the normal Au electrode OTFT.

Development of Porthole Extrusion Die for Improving Welding Pressure in Welding Chamber by Using Numerical Analysis (수치해석을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출금형 개발)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Porthole extrusion process is a very effective metal forming process to produce aluminum profiles with hollow sections. The structure of porthole extrusion die is very complex. In this process, the billet is divided by porthole bridge, and then the divided billet is welded in the welding chamber. The welding pressure in the welding chamber is very important. The higher welding pressure improves the quality of the aluminum profiles. Therefore, the objective of this study is to develop a new porthole extrusion die for improving the welding pressure in the welding chamber by using numerical analysis. The effectiveness of the new porthole extrusion die was verified by using numerical analysis. Through numerical analysis, the welding pressures in the welding chamber between the new porthole die and the conventional porthole die were compared with each other.

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Effects of Solder Particle Size on Rheology and Printing Properties of Solder Paste (미세피치 접합용 솔더 페이스트의 솔더 분말 크기에 따른 레올로지 및 인쇄 특성 평가)

  • Jun, So-Yeon;Lee, Tae-Young;Park, So-Jeong;Lee, Jonghun;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2022
  • The wettability and rheological properties of solder paste with the size of the solder powder were evaluated. To formulate the solder paste, three types of solder powder were used: T4 (20~28 ㎛), T5 (15~25 ㎛), and T6 (5~15 ㎛). The viscosities of the T4, T5, and T6 solder pastes at 10 RPM were 155, 263, and 418 Pa·s, respectively. After 7 days, the viscosity of the T4 solder paste slightly increased by 2.6% and that of T5 was increased by 20.6%. The viscosity of the T6 solder paste after 7 days could not be measured due to high viscosity. The viscosity variation with solder particle size also affected on the printability of the solder. In the case of the T4 solder paste, printability, slump, bridging, and soldering properties were excellent. On the other hand, T5 showed slight dewetting and solder ball defects. Especially, T6, which the smallest powder size, showed poor printability and dewetting at the edge of solder.

Fabrication of High-Temperature Si Hall Sensors Using Direct Bonding Technology (직접접합기술을 이용한 고온용 Si 홀 센서의 제작)

  • Chung, G.S.;Kim, Y.J.;Shin, H.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1431-1433
    • /
    • 1995
  • This paper describes the characteristics of Si Hall sensors fabricated on a SOI(Si-on-insulator} structure, in which the SOI structure was forrmed by SDB(Si-wafer direct bonding) technology. The Hall voltage and the sensitivity of implemented Si Hall devices show good linearity with respect to the applied magnetic flux density and supplied current. The product sensitivity of the SDB SOI Hall device is average $600V/A{\cdot}T$. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(Temperature Coefficient of the Offset Voltage) and TCS(Temperature Coefficient of the product Sensitivity) are less than ${\pm}6.7{\times}10^{-3}/^{\circ}C$ and ${\pm}8.2{\times}10^{-4}/^{\circ}C$, respectively. From these results, Si Hall sensors using the SOI structure presented here are very suitable for high-temperature operation.

  • PDF

유기 분자 시스템에서의 전하수송: HAT-CN 홀주입 층의 에너지레벨 정렬과 Alq3 유도체들의 이론적 이동도 어림

  • Lee, Yeon-Jin;Lee, Hyeon-Bok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.112-112
    • /
    • 2015
  • 유기 분자들은 대부분 전기가 잘 통하지 않아, 그 응용이 매우 제한적이었으나, 1985년의 C. W. Tang 교수의 다층 구조 전자소자의 보고를 기점으로 급격한 발전을 이루었다. 현재는 유기분자를 이용한 디스플레이인 AMOLED(아몰레드)를 적용한 스마트폰, TV등이 상용화 되었을 정도로 기술 성숙도가 매우 높아졌다. 그러나 여전히 분자 시스템에서의 전하 수송에 대해서는 하나의 정립된 모델이 없다. 일례로, 밴드 수송과 호핑 수송 등 두 가지 다른 전하수송 특성이 보고되고 있다. 본 발표에서는 계면 에너지레벨 접합과, 분자층 내부의 분자간 상호작용(호핑 수송 위주로) 측면에서 분자 시스템의 전하 수송에 대해 논의한다.

  • PDF

Extrusion process Analysis and Evaluation of Mechanical property for Micro Multi Cell Tube with 4 hole (4 홀 Micro Multi Cell Tube 의 압출공정 해석 및 기계적 특성 평가)

  • 이정민;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.397-400
    • /
    • 2004
  • The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. In general, porthole die extrusion has a great advantage in the forming that produces the hollow sections difficult to produce by conventional extrusion with a mandrel on the stem. Especially, condenser tube manufactured by porthole die belongs to sophisticated part and demands tighter dimension tolerance and higher surface finish than any other part. In order to confirm the general of porthole die extrusion, we perform the 3D FE analysis of hot porthole extrusion in non-steady state by using DEFORM 3D and investigate a pattern of elastic deformation for porthole die through the stress analysis using ANSYS 5.5 during extrusion process.

  • PDF

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF