• Title/Summary/Keyword: 홀로그래픽 리소그래피

Search Result 6, Processing Time 0.019 seconds

Two-dimensional Nano-patterning with Immersion Holographic Lithography (액침 홀로그래픽 리소그래피 기술을 이용한 2 차원 나노패터닝)

  • Kim, Sang-Won;Park, Sin-Jeung;Kang, Shin-Il;Hahn, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.128-134
    • /
    • 2006
  • Two-dimensional nano-patterns are fabricated using immersion holographic lithography. The photoresist layer is exposed to an interference pattern generated by two incident laser beams($\lambda$=441.6 nm, He-Cd laser) of which the pitch size is less than 200 nm. Good surface profiles of the 2 dimensional patterns are achieved by trimming the lithography process parameters, such as, exposure time, developing time and refractive index of medium liquid.

Fabrication of Metallic Nano-filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF

Fabrication optimization of Fiber Bragg gratings (광섬유 브래그 격자(Fiber Bragg grating) 제작과 제작 조건에 따른 특성 향상)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1680-1686
    • /
    • 2010
  • Optical fiber Bragg grating to have the lowest transmitivity at 1549.9nm wavelength was fabricated using a Gaussian distributed KrF Eximer laser of 248nm lasing wavelength and a phase mask of 1.072um period. The proper alignment of an optic setup to fabricate fiber gratings was investigated and the reproductivity of the grating fabrication was examined using the obtained optimum fabrication condition in this experiment.

Micropattern generation by holographic lithography and fabrication of quantum wire array by MOCVD (홀로그래픽 리소그래피에 의한 미세패턴 형성과 MOCVD에 의한 양자세선 어레이의 제작)

  • Kim, Tae-Geun;Cho, Sung-Woo;Im, Hyun-Sik;Kim, Young;Kim, Moo-Sung;Park, Jung-Ho;Min, Suk-Ki
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.114-119
    • /
    • 1996
  • The use of holographic interference lithography and removal techniques to corrugate GaAs substrate have been studied. The periodic photoresist structure, which serves as a protective mask during etching, is holographically prepared. Subsequently periodic V-grooved pattern is formed on the GaAs substrate by conventional a H$_{2}$SO$_{4}$-H$_{2}$O$_{2}$-H$_{2}$O wet etching. The linewidth of a GaAs pattern is about 0.4$\mu$m and the depth is 0.5$\mu$m A quantum wires(QWRs) array is well formed on the V-grooved substrate by MOCVD (metalorganic chemical vapor deposition) growth of GaAs/Al$_{0.5}$Ga$_{0.5}$As (50$\AA$/300$\AA$) quantum wells. The formation of QWR array is confirmed by the temperature dependent photoluminescence (PL) measurement. The intensive PL peak with a FWHM of 6meV at 21K shows the high quality of the QWR array.

  • PDF