• Title/Summary/Keyword: 혼화재

Search Result 550, Processing Time 0.023 seconds

The Chloride Diffusion Properties of Concrete with Mineral Admixtures (혼화재를 사용한 콘크리트의 염소이온 확산 특성)

  • Park, Jung-Jun;Koh, Kyoung-Taek;Kim, Do-Gyeum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.239-246
    • /
    • 2004
  • To improve the durability of concrete structure, we usually consider the reduction of water-cement ratio, the increase of concrete cover depth and the use of mineral admixtures. The use of admixtures make concrete more durable and tighten against water in recent papers so it is needed to study more about the relationship between the admixtures and the chloride ion diffusion. Therefore we analyzed the correlation between chloride ion diffusion and physical properties such as compressive strength, void ratio, air permeability of the concrete, and tried to use them as fundamental data for analyzing chloride ion diffusion mechanism of the concrete mixed with mineral admixtures.

Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing CO2 Emission of Concrete (콘크리트 CO2 저감을 고려한 혼화재 및 단위 결합재 양의 설계)

  • Yang, Keun-Hyeok;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • The present study assessed the $CO_2$ emissions of concrete according to the type and replacement ratio of supplementary cementitious materials (SCM) and concrete compressive strength using a comprehensive database including 2464 cement concrete specimens and 776 cement concrete mixes with different SCMs. The system studied in $CO_2$ assessment of concrete based on Korean lifecycle inventory was from cradle to pre-construction, which includes consistent materials, transportation and production phases. As the performance efficiency indicators, binder and $CO_2$ intensities were analyzed, and simple equations to evaluate the amount of $CO_2$ emission of concrete were then formulated as a function of concrete compressive strength and the replacement ratio of each SCM. Hence, the proposed equations are expected to be practical and useful as a guideline to determine the type and replacement ratio of SCM and unit content of binder in concrete mix design that can satisfy the target compressive strength and $CO_2$ reduction percentage relative to cement concrete.

Utillization of Mineral Admixtures for the Reduction of Slump Loss in Fresh Concrete (굳지 않은 콘크리트의 슬럼프손실 저감을 위한 혼화재의 활용)

  • 문한영;문대중
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.155-165
    • /
    • 1998
  • 굳지 않은 콘크리트의 슬럼프손실을 저감시키기 위한 목적으로 고로슬래그 미분말 및 플라이애쉬의 혼합비율과 혼화제의 첨가방법을 변화시킨 콘크리트의 믹싱후 경과시간에 따른 슬럼프 변화에 대하여 고찰하였다. 연구결과 보통포틀랜드시멘트에 고로슬래그 비분말 또는 플라이애쉬를 혼합한 콘크리트가 혼화재를 혼합하지 않은 콘크리트보다 슬럼프손실을 줄일 수 있었으며, 고로슬래그 미분말과 플라이애쉬를 각각 50 및 5%를 혼합한 3성분계 콘크리트의 경우 슬럼프손실을 저감시키는데 유효하였다. 또한 혼화제의 일부를 15분후 분할하여 후첨가하는 혼합방법이 굳지않은 콘크리트의 슬럼프손실을 저감시키는데 가장 큰 효과가 있다. 한편 혼화재를 혼합한 3성분계 보통강도용 및 고강도용 콘크리트의 재령 28일까지의 압축강도는 혼화재를 혼합하지 않은 콘크리트보다 작았으나 재령 91일 압축강도는 31% 및 15%정도 크게 증가하였다.

Effect of Mineral Admixture Types on the Engineering Properties and the Drying Shrinkage of the Concrete (혼화재 종류가 콘크리트의 공학적 특성 및 건조수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.119-125
    • /
    • 2009
  • In this paper, the engineering properties and estimation of drying shrinkage of concrete incorporating fly ash (FA), blast furnace slag (BS) and cement kiln dust (CKD) were discussed. FA, BS and CKD contents ranged from 0% to 20%. Water to binder ratio (W/B) also ranged from 40 to 50 %, with a 5% interval. For estimating drying shrinkage, an exponential model proposed by the author was applied, According to results, the use of FA, BS and CKD resulted in a decrease of flowability and air contents. As expected, the use of admixtures also decreases the early age strength of concrete, while at later age, due to a pozzolanic reaction of FA and BS, the compressive strength was recovered to a value comparable with that of plain concrete. For drying shrinkage, the use of admixtures led to an increase in the drying shrinkage of concrete. The exponential model suggested by the author showed good agreement between the calculated and experimental values both at early age and at later age.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

A Study on the Reuse of Modified and Quenched Converter Slag as Cement Additives (개질.수쇄한 전로슬래그의 시멘트 혼화재로 활용에 관한 연구)

  • Ko In-Yong;Jin Byung-Sub;Kim Young-Whan
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.23-28
    • /
    • 2003
  • Converter slag was reduced and modified with the addition of 5~10 weight percent of $SiO_2$, $Al_2O_3$ and $SiO_2+Al_2O_3$. which was water quenched and used as a cement additives. Additive was mixed from 10 to 30 weight percent with ordinary portland cement and made 9 kinds of mixed cement. Compressive strength of mixed cement mortar was tested md compared with com pressive strength of ordinary portland cement mortar. Effect of hydration reaction on the compressive strength of cement mortar was investigated by means of x-ray diffraction and scanning electron microscopy.

Mechanical Properties of High Strength Concrete with High Volume Mineral Admixture (다량의 혼화재를 사용한 고강도 콘크리트의 역학적 특성)

  • Baek, Chul-Woo;Park, Cho-Bum;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.180-187
    • /
    • 2014
  • The purpose of this study is to evaluate on the mechanical properties of High Volume Mineral Admixture(HVMA) high strength concrete to reduce the amount use of Ordinary Potland Cement, to discover the optimized HVMA binder and to test HVMA concrete based on the change of W/B and curing temperature. The results were shown as follows: The HVMA binder using the mixture of combined heat power plant fly ash and anhydrous gypsum known as inorganic activators with the mixture of blast furnace slag and fly ash was optimized. The mixture of HVMA high strength concrete at 26% of W/B ratio had a good result on flow characteristic and mechanical properties. High strength HVMA concrete over 50MPa is possibly manufactured over curing temperature $20^{\circ}C$.

Experimental Study on the Setting Time and Compressive Strength of Nano-Micro Pozzolanic Binders as Cement Composites (포졸란 혼화재의 입자 크기 및 비표면적에 따른 응결시간 발현 및 압축강도 특성 평가)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2022
  • In this study, the setting time and compressive strength of cement paste composites applied with nano-micro pozzolanic binders were experimental analyzed. The pozzolanic binder was reduced initial and final setting time and the compressive strength was increased. Micro silica was effective in decrease the initial setting and final setting time and impressing the compressive strength. When two or more cement binders were used, the using of silica fume and a small amount of nano silica at reduced the setting time to 62-64 % to OPC cement and the compressive strength was increased to 117 %. A small amount of mixing the nano silica was effect to pore filling and pozzolanic activation. However, the addition of a chemical admixture should be considered when mixing table design because pozzolanic binders high specific surface area causes a decrease in cement composites flow.