• Title/Summary/Keyword: 혼합 가우시안

Search Result 192, Processing Time 0.025 seconds

Particle Filters using Gaussian Mixture Models for Vision-Based Navigation (영상 기반 항법을 위한 가우시안 혼합 모델 기반 파티클 필터)

  • Hong, Kyungwoo;Kim, Sungjoong;Bang, Hyochoong;Kim, Jin-Won;Seo, Ilwon;Pak, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.274-282
    • /
    • 2019
  • Vision-based navigation of unmaned aerial vehicle is a significant technology that can reinforce the vulnerability of the widely used GPS/INS integrated navigation system. However, the existing image matching algorithms are not suitable for matching the aerial image with the database. For the reason, this paper proposes particle filters using Gaussian mixture models to deal with matching between aerial image and database for vision-based navigation. The particle filters estimate the position of the aircraft by comparing the correspondences of aerial image and database under the assumption of Gaussian mixture model. Finally, Monte Carlo simulation is presented to demonstrate performance of the proposed method.

Color Image Segmentation Based on Morphological Operation and a Gaussian Mixture Model (모폴로지 연산과 가우시안 혼합 모형에 기반한 컬러 영상 분할)

  • Lee Myung-Eun;Park Soon-Young;Cho Wan-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.84-91
    • /
    • 2006
  • In this paper, we present a new segmentation algorithm for color images based on mathematical morphology and a Gaussian mixture model(GMM). We use the morphological operations to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the GMM to represent the probability distribution of color feature vectors and used the deterministic annealing expectation maximization (DAEM) algorithm to estimate the parameters of the GMM that represents the multi-colored objects statistically. Finally, we segment the color image by using posterior probability of each pixel computed from the GMM. The experimental results show that the morphological operation is efficient to determine a number of components and initial modes of each component in the mixture model. And also it shows that the proposed DAEM provides a global optimal solution for the parameter estimation in the mixture model and the natural color images are segmented efficiently by using the GMM with parameters estimated by morphological operations and the DAEM algorithm.

Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction (배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어)

  • Kim, Young-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.366-369
    • /
    • 2005
  • Background subtraction is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable factor such as gradually changing illumination, swaying trees and suddenly moving objects, which are to be considered for the adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background adaptively considering the various changes in the scenes, and the adaptive GMMs improving the real-time performance were worked. This paper, for on-line background subtraction, applied the improved adaptive GMM, which uses the small constant for learning rate ${\alpha}$ and is not able to speedily adapt the suddenly movement of objects, So, this paper proposed and evaluated the dynamic control method of ${\alpha}$ using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

A Hardware Implementation of Moving Object Detection Algorithm using Gaussian Mixture Model (가우시안 혼합 모델을 이용한 이동 객체 검출 알고리듬의 하드웨어 구현)

  • Kim, Gyeong-hun;An, Hyo-Sik;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.407-409
    • /
    • 2015
  • In this paper, a hardware implementation of MOD(Moving Object Detection) algorithm is described, which is based GMM(Gaussian Mixture Model) and background subtraction. The EGML(Effective Gaussian Mixture Learning) is used to model and update background. Some approximations of EGML calculations are applied to reduce hardware complexity, and pipelining technique is used to improve operating speed. Gaussian parameters are adjustable according to various environment conditions to achieve better MOD performance. MOD processor is verified by using FPGA-in-the-loop verification, and it can operate with 109 MHz clock frequency on XC5VSX95T FPGA device.

  • PDF

Decompose the Manifold Into Gaussian Densities : Face Detection (다양체 가우시안 분해 : 얼굴 검출)

  • 양준영;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.682-684
    • /
    • 2004
  • 제안하는 방법은 분산량이 큰 객체에 대하여 여러 개의 가우시안을 이용하여 다양체를 분해하는 알고리즘이다. 제안하는 방법은 단순하지만 빠르게 다양체를 근사시키는 여러 개의 가우시안을 생성한다. 또한, 가우시안 혼합 모델과 유사하나 보다 빠른 연산시간을 보장하며 Outlier에 대한 신뢰성을 향상 시켜준다. 제안하는 알고리즘은 우리가 수집한 다 인종(동양인, 혹인, 백인, 히스패닉) 얼굴 데이터 베이스 QQVGA영상에서 100%의 검출률과 0개의 오분류의 높은 성능을 도출하였다

  • PDF

RPCA-GMM for Speaker Identification (화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델)

  • 이윤정;서창우;강상기;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.519-527
    • /
    • 2003
  • Speech is much influenced by the existence of outliers which are introduced by such an unexpected happenings as additive background noise, change of speaker's utterance pattern and voice detection errors. These kinds of outliers may result in severe degradation of speaker recognition performance. In this paper, we proposed the GMM based on robust principal component analysis (RPCA-GMM) using M-estimation to solve the problems of both ouliers and high dimensionality of training feature vectors in speaker identification. Firstly, a new feature vector with reduced dimension is obtained by robust PCA obtained from M-estimation. The robust PCA transforms the original dimensional feature vector onto the reduced dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector. Secondly, the GMM with diagonal covariance matrix is obtained from these transformed feature vectors. We peformed speaker identification experiments to show the effectiveness of the proposed method. We compared the proposed method (RPCA-GMM) with transformed feature vectors to the PCA and the conventional GMM with diagonal matrix. Whenever the portion of outliers increases by every 2%, the proposed method maintains almost same speaker identification rate with 0.03% of little degradation, while the conventional GMM and the PCA shows much degradation of that by 0.65% and 0.55%, respectively This means that our method is more robust to the existence of outlier.

EM Algorithm with Initialization Based on Incremental ${\cal}k-means$ for GMM and Its Application to Speaker Identification (GMM을 위한 점진적 ${\cal}k-means$ 알고리즘에 의해 초기값을 갖는 EM알고리즘과 화자식별에의 적용)

  • Seo Changwoo;Hahn Hernsoo;Lee Kiyong;Lee Younjeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2005
  • Tn general. Gaussian mixture model (GMM) is used to estimate the speaker model from the speech for speaker identification. The parameter estimates of the GMM are obtained by using the Expectation-Maximization (EM) algorithm for the maximum likelihood (ML) estimation. However the EM algorithm has such drawbacks that it depends heavily on the initialization and it needs the number of mixtures to be known. In this paper, to solve the above problems of the EM algorithm. we propose an EM algorithm with the initialization based on incremental ${\cal}k-means$ for GMM. The proposed method dynamically increases the number of mixtures one by one until finding the optimum number of mixtures. Whenever adding one mixture, we calculate the mutual relationship between it and one of other mixtures respectively. Finally. based on these mutual relationships. we can estimate the optimal number of mixtures which are statistically independent. The effectiveness of the proposed method is shown by the experiment for artificial data. Also. we performed the speaker identification by applying the proposed method comparing with other approaches.

Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions (가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법)

  • Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.725-730
    • /
    • 2007
  • Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.

An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction (배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델)

  • Kim Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.187-194
    • /
    • 2005
  • The background subtraction method is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable environment factors such as gradually changing illumination, swaying trees and suddenly moving objects , which are to be considered for an adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background by considering adaptively the various changes in the scenes, and the adaptive GMMs improving the real-time Performance were Proposed and worked. This paper, for on-line background subtraction, employed the improved adaptive GMM, which uses the small constant for learning rate a and is not able to speedily adapt the suddenly movement of objects, So, this paper Proposed and evaluated the dynamic control method of a using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Separating Signals and Noises Using Mixture Model and Multiple Testing (혼합모델 및 다중 가설 검정을 이용한 신호와 잡음의 분류)

  • Park, Hae-Sang;Yoo, Si-Won;Jun, Chi-Hyuck
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.759-770
    • /
    • 2009
  • A problem of separating signals from noises is considered, when they are randomly mixed in the observation. It is assumed that the noise follows a Gaussian distribution and the signal follows a Gamma distribution, thus the underlying distribution of an observation will be a mixture of Gaussian and Gamma distributions. The parameters of the mixture model will be estimated from the EM algorithm. Then the signals and noises will be classified by a fixed threshold approach based on multiple testing using positive false discovery rate and Bayes error. The proposed method is applied to a real optical emission spectroscopy data for the quantitative analysis of inclusions. A simulation is carried out to compare the performance with the existing method using 3 sigma rule.