• Title/Summary/Keyword: 혼합클러스터링

Search Result 54, Processing Time 0.045 seconds

Gaussian Mixture Model for Data Clustering using Fuzzy Entropy Measures (데이터 클러스터링을 위한 가우시안 혼합 모델을 이용할 퍼지 정보량 측정)

  • 임채주;최병인;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.335-338
    • /
    • 2004
  • 본 논문에서는 기존의 정보량(Entropy) 기반 클러스터링 기법을 향상시키기 위한 방법으로서 퍼지 정보량을 이용하였다 가우시안 혼합 모델을 이용하면, 프로토타입의 목적 함수를 이용하는 클러스터링 기법보다 향상된 결과를 얻을 수 있고, Parameter의 조정이 요구되지 않는다. 그러나, 가우시안 혼합 모델의 사용은 주어진 패턴 집합을 클러스터링하는데 계산량의 증가를 초래하게 된다. 본 논문에서는 가우시안 혼합 모델의 정형화에 요구되는 계산량을 감소시키는 방법을 제시한다 또한 퍼지정보량(Fuzzy Entropy)을 적용하여 기존의 정보량 기반의 클러스터링 결과와 비교 분석하였다.

  • PDF

A Study on Optimization of Decision Tree based State Tying Model (결정트리 기반 상태공유 모텔 최적화에 관한 연구)

  • 한명희;이호준;김순협
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.17-20
    • /
    • 2003
  • 본 논문에서는 공유 모델링의 대표적인 방법인 결정트리 기반 상태공유 모델을 기반으로 하여 그 출력 확률 분포의 혼합 가우시안 수를 줄임으로써 모델을 최적화하고자 하였다. 결정트리 기반의 상태공유 모델링은 일반적인 방법을 따랐으며 혼합 가우시안 수를 늘려 인식률이 최대가 되는 지점에서 혼합 가우시안을 클러스터링하여 그 수를 줄였다. 클러스터링 시에 필요한 거리 측정 방법이나 가까운 두 가우시안의 합성 방법을 여러 기법을 실험하였다. 이때 인식률은 클러스터링 이전인 97.2%를 유지하였으며 총 혼합 가우시안의 감소율은 1.0%를 보임으로써 모델을 최적화할 수 있었다.

  • PDF

Clustering of Web Document Exploiting with the Union of Term frequency and Co-link in Hypertext (단어빈도와 동시링크의 결합을 통한 웹 문서 클러스터링 성능 향상에 관한 연구)

  • Lee, Kyo-Woon;Lee, Won-hee;Park, Heum;Kim, Young-Gi;Kwon, Hyuk-Chul
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.3
    • /
    • pp.211-229
    • /
    • 2003
  • In this paper, we have focused that the number of word in the web document affects definite clustering performance. Our experimental results have clearly shown the relationship between the amounts of word and its impact on clustering performance. We also have presented an algorithm that can be supplemented of the contrast portion through co-links frequency of web documents. Testing bench of this research is 1,449 web documents included on 'Natural science' category among the Naver Directory. We have clustered these objects by term-based clustering, link-based clustering, and hybrid clustering method, and compared the output results with originally allocated category of Naver directory.

  • PDF

Document Clustering Using Reference Titles (인용문헌 표제를 이용한 문헌 클러스터링에 관한 연구)

  • Choi, Sang-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.2
    • /
    • pp.241-252
    • /
    • 2010
  • Titles have been regarded as having effective clustering features, but they sometimes fail to represent the topic of a document and result in poorly generated document clusters. This study aims to improve the performance of document clustering with titles by suggesting titles in the citation bibliography as a clustering feature. Titles of original literature, titles in the citation bibliography, and an aggregation of both titles were adapted to measure the performance of clustering. Each feature was combined with three hierarchical clustering methods, within group average linkage, complete linkage, and Ward's method in the clustering experiment. The best practice case of this experiment was clustering document with features from both titles by within-groups average method.

Clustering Method Using the Union Information of Term Frequency and Link in Hypertext (웹 문서의 단어정보와 링크정보 결합을 이용한 클러스터링 기법)

  • Lee, Won-Hee;Lee, Kyo-Woon;Park, Heum;Kim, Young-Ki;Kwon, Hyuck-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.101-107
    • /
    • 2003
  • 최근의 웹 문서는 텍스트 위주의 구성이 아닌 이미지, 사운드, 동영상 등의 다양한 타입으로 구성되는 추세이다. 이에 따라 단순히 웹 문서 내의 단어 정보추출 만으로는 좋은 성능의 클러스터링을 기대하기 어렵다. 본 논문은 전통적인 문서 클러스터링 기법인 단어기반 클러스터링 기법의 취약점을 제시하고, 웹 문서간의 링크구조정보 중 동시인용 정보를 이용하여 웹 문서 클러스터링 성능향상의 가능성을 보이고자 한다. 실험에서는 네이버디렉토리 중 '자연과학' 범주에 포함된 문서를 대상으로 위의 두 가지 방식과 이 두 가지를 혼합한 단어-링크 혼합 클러스터링을 통해 기존의 방식보다 더 낳은 성능을 얻을 수 있었다.

  • PDF

A Similar Price Zone Determination of Public Land Price Using a Hybrid Clustering Technique (평균연결법과 K-means 혼합클러스터링 기법을 이용한 공시지가 유사가격권역의 설정)

  • Yi Seong-Kyu;Park Soo-Hong;Hong Sung-Eon
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.121-135
    • /
    • 2006
  • Even though the similar land price zone is very important element in the public land appraisal procedure, the concept is implicitly described and applied into the actual land appraisal system. This situation makes it worse when applying for the automatic selection of a comparative standard land parcel. In addition, the division of similar land price zones requires the objective and reasonable process for improving ALPAS(Automatic land Price Appraisal System), which becomes an issue today. To solve the similar land price zone determination problem that is caused by the lack of objective numerical standard, this study proposed a similar land price zone determination method using a hybrid clustering technique. Results showed that this hybrid clustering method that applied into the test area could easily detect similar land price zones with considerable accuracy levels, which are verified with some test statistics and real comparative standard land parcels done by manually.

Design of Sewage Treatment Process Simulator with the Aid of IG-based RBFNNs (정보입자기반 RBFNNs에 의한 하수처리공정 시뮬레이터의 설계)

  • Lee, Seung-Joo;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1958-1959
    • /
    • 2011
  • RBFNNs(Radial Basis Function Neural Networks) 모델의 경우 Min-Max, HCM(Hard C-means)클러스터링 그리고 FCM(Fuzzy C-means)클러스터링 중 한가지를 통해 데이터 입자는 로드 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정점을 정의한다. 본 논문은 기존의 방법과는 다르게 Min-Max와 FCM클러스터링을 혼합하여 로드의 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정정을 정의하는 방법으로 사용하고자 한다. PSO최적화 알고리즘을 이용하여 같은조건에서 최적화한 기존의 방법으로 모델링된 RBFNNs와 Min-Max와 FCM 클러스터링을 혼합하여 사용한 방법의 비교를 통하여 어떤 모델의 성능이 더욱 좋은지 비교하고자 한다.

  • PDF

Clustering Method Using Composition and Partition (Composition과 Partition을 이용한 클러스터링 방법)

  • 김종대;최은만
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.548-550
    • /
    • 1999
  • 최근 시스템 환경의 급격한 변화에 따라 기존 시스템의 유지보수와 재사용에 관련된 여러 가지 문제점이 발견되었다. 객체지향개념은 우리에게 재사용과 유지보수를 용이하게 해 줄 것으로 생각되었지만 기대만큼의 효과는 거두지 못하고 있다. 이러한 현실적인 문제를 해결하기 위해 많은 클래스들을 관련성을 이용해 패키지로 분류하는 클러스터링 기법들이 연구되었다. 대부분이 소프트웨어의 품질을 평가하기 위한 매트릭스를 기반으로 한 것이었지만, 실제 현장에서 개발자들의 경험에 의한 클러스터링 기법과는 많은 차이가 발생한다. 본 논문에서는 메트릭스를 이용한 Composition 방법과 개발자들의 경험을 이용한 Partition 방법을 혼합하여 정량화된 수치를 제공하며 개발자들의 경험을 충족시키는 방법을 제시하고자 한다.

  • PDF

Design and Performance Analysis for Clustered MNOD(Multimedia News On Demand) Server (Clustered MNOD(Multimedia News On Demand) 서버와 설계와 성능 평가)

  • 강연경;박성호;김영주;정기동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.3-5
    • /
    • 1998
  • 단일 데이터적 특성을 가진 VOD(Video On Demand)와 같은 멀티미디어 응용의 경우 복합적이고 집합적인 클러스터링 서버구조(composite clustered server structure)를 가정하는 경우가 대부분 이었다. 그러나, 혼합 데이터적 특성이 강한 MNOD 와 같은 멀티미디어 응용은 단일화된 클러스터링 서버 구조 보다는 각 데이터의 특성을 잘 반영할 수 있는 독립적이고 분산된 형태의 클러스터링 구조가 필수적이다. 이에 본 논문은 MNOD 서비스를 위한 새로운 형태의 클러스터링 서버 구조를 설계하고, 구조의 당위성을 큐잉 분석 Alc 스케줄링의 효율성 측면에서 증명하려고 시도하였다. 큐잉 분석 결과, 독립적 형태의 구조가 지니는 확장성, 실패회복의 용이성 등의 제반 장점 뿐 아니라 응답시간의 측면에서도 기존의 집합적인 클러스터링 구조보다 좋은 성능을 보였다.

  • PDF

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF