• 제목/요약/키워드: 혼합정규분포모형

검색결과 34건 처리시간 0.018초

Density Estimation of Mixture Normal Distribution with Binned Data Using Nonlinear Regression

  • 나영호;오창혁
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.127-130
    • /
    • 2004
  • 혼합정규분포에서 얻어진 히스토그램 자료에서 모수의 추정은 EM 알고리즘 혹은 스프라인 방법이 흔히 이용되고 있다. 본 논문에서는 히스토그램 자료를 비선형회귀모형으로 적합하는 방법을 제시하고, 시뮬레이션으로 제시된 방법과 EM 알고리즘 방법을 비교하였다.

  • PDF

자기조직화 신경망을 이용한 정규혼합분포의 추정 (A Self-Organizing Network for Normal Mixtures)

  • 안성만;김명균
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.837-849
    • /
    • 2011
  • 본 연구에서는 자기조직화 신경망이 필요한 노드만을 가지고 최적화하여 정규혼합분포를 추정하는 모형을 제안한다. 제안한 모형은 SOMN모형과 벌점가능도를 사용한 모형을 결합한 것이다. SOMN의 장점은 수렴속도가 빠르고 표본의 크기가 작아도 발산하는 가능성이 낮다는 것이며, 벌점가능도를 사용한 모형은 필요없는 성분의 수를 줄일 수 있다는 것이다. 모의실험을 통하여 제안한 모형이 기대한 결과를 얻음을 확인하였다.

정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격결정에 대한 실증연구 (A numerical study on option pricing based on GARCH models with normal mixture errors)

  • 정승환;이태욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.251-260
    • /
    • 2017
  • Black와 Scholes (1973)와 Merton (1973)의 옵션 가격결정이론에 대한 논문이 발표 된 이후 다양한 실증 분석 결과에 의하여 시간의 흐름에 따라 변동성이 불변한다고 가정하는 Black-Scholes 모형이 시장의 옵션 가격을 적절히 설명하지 못하고 있다는 것이 밝혀지면서 많은 대안적인 연구들이 진행되어 왔다. 예를 들어, Duan (1995)은 위험중립측도 하에서의 몬테카를로 시뮬레이션을 통해 GARCH 모형을 따르는 기초 자산의 옵션가격을 도출하는 방법을 제시하였다. 그러나 실제 주식이나 환율 등의 금융자료에 수익률분포는 정규분포에 비해 꼬리가 두껍고, 급첨의 형태를 보이는 데 Duan (1995)의 옵션가격 결정 방법은 이를 적절히 반영하지 못하고 있다. 이를 해결하기 위해 본 논문에서는 정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격 결정 방법을 제안하고자 한다. KOSPI200 옵션가격 자료를 이용하여 본 논문에서 제시된 옵션가격과 정규분포를 가정한 GARCH 모형에 의해 결정된 옵션가격과 비교한 결과, 금융 자료의 급첨의 성질이 뚜렷한 불안정한 시기인 경우에 오차가 정규혼합모형이라고 가정한 GARCH 모형에 의한 옵션가격 결정의 성과가 월등히 좋아지는 것을 확인할 수 있었다.

정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택 (Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model)

  • 김승구
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.821-834
    • /
    • 2013
  • Law 등 (2004)은 군집분석에서 변수선택을 위해 정규분포기반 "두각 혼합모형(salient mixture model)"의 사용을 제안하였다. 본 논문에서는 이 모형의 적합 상의 문제점과 변수선택의 결함을 지적하고 그 대안을 제시한다. 모의자료와 실자료를 바탕으로 제안된 방법이 기존의 방법보다 유용함을 보였다.

EM 알고리즘에 의한 다변량 치우친 정규분포 혼합모형의 근사적 적합 (An approximate fitting for mixture of multivariate skew normal distribution via EM algorithm)

  • 김승구
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.513-523
    • /
    • 2016
  • 다중 치우침 모수벡터를 가진 다변량 치우친 정규분포 (MSNMix)를 EM 알고리즘으로 적합하려면 E-step에서 다변량 절단 정규분포의 적률과 확률을 계산해야 하는데 이것은 매우 큰 계산 시간을 요구한다. 그래서 비대칭 자료를 적합하는데 흔히 단순 치우침 모수를 가진 모형을 적용한다. 이 모형은 단변량 처리방식으로 적합하는 것이 가능하기 때문에 처리속도가 매우 빠르다. 그러나 단순 치우침 모수를 적용하는 것은 응용에서 비현실적인 경우가 많다. 본 논문에서는 다중 치우침 모수를 가지는 MSNMix의 근사적 추정법을 제안하는데, 이 방법은 단변량 처리방식이 적용되므로 향상된 처리속도를 보장한다. 그리고 제안된 방법의 실효성을 보이기 위해 몇 가지 실험 결과를 제공한다.

병렬처리를 통한 정규혼합분포의 추정 (Parallel Implementations of the Self-Organizing Network for Normal Mixtures)

  • 이철희;안성만
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.459-469
    • /
    • 2012
  • 본 연구에서는 자기조직화 신경망이 필요한 노드만을 가지고 최적화하여 정규혼합분포를 추정하는 모형(Ahn과 Kim, 2011)을 Java언어에서 제공하는 스레드(thread)를 기반으로, 멀티코어 컴퓨팅환경에서 병렬처리방식으로 구현하여 순차처리방식에 비해 짧은 연산시간으로 정규혼합모형의 추정이 가능함을 보이려고 한다. 이를 위하여 Ahn과 Kim이 제안한 모형을 바탕으로 두 가지의 병렬처리 방법을 제안하고 그 성능을 평가하였다. 병렬처리 방법은 Java의 멀티스레드를 이용하여 구현되었으며, 모의실험을 통하여 제안한 모형이 순차처리방식과 비교하여 수렴속도가 빠름을 확인하였다.

Gibbs알고리즘을 이용한 저축률의 정규분포혼합 추정 (Estimation of the Mixture of Normals of Saving Rate Using Gibbs Algorithm)

  • 윤종인
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.219-224
    • /
    • 2015
  • 본 연구는 우리나라 가계저축률의 정규분포혼합을 추정한다. 2014년 마이크로데이터인 MDSS를 이용하였고 추정방법으로는 깁스알고리즘을 이용하였다. 실증분석결과의 주요내용은 다음과 같다. 첫째, 정규분포혼합을 추정하기 위한 방법으로 깁스알고리즘은 잘 작동하였다. 즉 주요 모수추정치는 모두 정상적 분포를 갖는 것으로 나타났다. 둘째 저축률 자료는 적어도 2개의 성분, 즉 저축률이 평균 0%인 성분과 평균 29.4%인 성분으로 이루어져 있는 것으로 보인다. 즉 우리나라의 가계는 고저축률 집단과 저저축률 집단으로 나누어질 수 있다는 뜻이다. 셋째 정규분포혼합모형 자체는 어떤 가계가 첫째 성분 또는 둘째 성분에 속하는가를 설명할 수 없다. 이에 본 연구는 추가적인 분석을 수행하였지만 소득수준과 가구주 연령은 이에 대한 설명력을 지니지 못하는 것으로 판단된다.

로버스트 선형혼합모형을 이용한 필드시험 데이터 분석 (Analysis of Field Test Data using Robust Linear Mixed-Effects Model)

  • 홍은희;이영조;옥유진;나명환;노맹석;하일도
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.361-369
    • /
    • 2015
  • 연속측도의 반응변수가 반복측정된 실험 자료의 분석을 위해 흔히 선형혼합모형이 사용된다. 그러나, 잔차의 분포가 이분산성이거나 비정규성을 가질 때 표준적인 선형혼합모형은 적절하지 않은 결과를 가져온다. 잔차의 분포가 두터운 꼬리를 가진 비정규분포를 보이는 타이어 필드시험 데이터를 로버스트 선형혼합모형에 적합시킴으로써 보다 더 정확하고 신뢰할 수 있는 분석결과를 얻을 수 있다. 추가적으로 신뢰성 분석 결과를 제시한다.

정규 혼합분포를 이용한 준지도 학습 (Semi-Supervised Learning by Gaussian Mixtures)

  • 최병정;채윤석;최우영;박창이;구자용
    • 응용통계연구
    • /
    • 제21권5호
    • /
    • pp.825-833
    • /
    • 2008
  • 혼합모형을 이용한 판별분석은 다중 분류문제를 해결하는데 유용한 방법으로서 준지도 학습으로 확장될 수 있다. 본 논문에서는 정규 혼합분포를 이용한 준지도 학습 방법에서 혼합 모형의 하위 구성요소 개수 선택 기준을 연구하고자 한다. 하위 구성요소 선택 기준으로서 베이지안 정보량을 사용하였고 모의실험을 통해 이 방법의 유용성을 규명하였다.

혼합원형분포를 이용한 지방국도의 시간교통량 추정모형 (Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions)

  • 나종화;장영미
    • 응용통계연구
    • /
    • 제24권3호
    • /
    • pp.547-557
    • /
    • 2011
  • 본 논문에서는 우리나라 지방국도의 특정지점에서 수집된 교통량 자료를 이용하여 일일 시간교통량 추정모형을 개발하였다. 본 연구의 특징은 일일 24시의 시간변수를 원형변수로 취급하고, 지방부 교통량 자료의 특성상 출퇴근 시간에 교통량이 집중되는 이봉형의 현상을 감안하여 원형분포의 혼합모형을 고려하였다. 또한 시간대별 교통량의 분포가 요일에 따라 유사한 패턴을 가지는 데 착안하여 요일별 모형을 제시하였다. 혼합원형분포의 모수추정에는 EM알고리즘이 사용되었으며, 모형의 성능비교를 위해 가변수 회귀모형과의 비교를 실시하였다. 제시된 요일별 지방국도의 시간교통량 적합모형은 계측기의 손상 등으로 인한 교통량 결측자료의 추정에 효과적으로 사용될 수 있다.